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ABSTRACT 
 

This paper presents a method for estimating Coulomb and viscous friction coefficients from 
responses of a harmonically excited dual-damped oscillator with linear stiffness.  The identification 
method is based on existing analytical solutions of non-sticking responses excited near resonance.  
The method is applicable if the damping ratio of viscous component can be considered small.  The 
Coulomb and viscous friction parameters can be extracted from two or more input-output amplitude 
pairs at resonance.  The method is tested numerically and experimentally.  Experimental results are 
cross checked with estimations from free-vibration decrements and also from friction measurements.  
 
1 INTRODUCTION 
 

In this paper, we present a method of simultaneously estimating Coulomb and viscous damping 
parameters in forced linear oscillators.  The method complements existing vibration-based methods 
for identifying single-source and dual-source damping in free and forced vibration, and rivals such 
methods in simplicity.  In this work, we apply the method to a linear-bearing experiment, for which 
Coulomb plus viscous friction serves as a simplified model. 

Mechanical vibration systems with viscous and Coulomb friction are of importance in the 
applications of dynamics and control problems.  Den Hartog [1] first solved the forced response of a 
single-degree-of-freedom system with both viscous and dry-friction damping.  His results included 
the analytical solutions of periodic non-stop and stick-slip motions, and illustrations of the frequency 
response curves for different values of viscous damping, dry-friction damping, excitation amplitude, 
and excitation frequency.   Hundal [2] studied a base-excitation frictional oscillator in which close 
form analytical solutions of the equation of motion were obtained.  Results were presented in 
nondimensional form as magnification factors versus frequency ratios as functions of viscous and 
Coulomb friction parameters.   

Various approaches have been adopted to identify damping information from a vibration system 
with both sources of damping.  For example, Jacobsen and Ayre [3] developed an approximate 
scheme for estimating both viscous and dry friction quantities from the free-vibration decrements by 
noting that the viscous friction dominates in the large-amplitude responses, and that Coulomb 
friction dominates in the small-amplitude oscillations.  As such, they exploited the exponential and 
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linear decay of a free vibration viscous or Coulomb-friction damped system, knowledge of which 
goes back to Helmholtz [4] in 1863 and Rayleigh [5] for the viscous case, and Lorenz [6] for the 
Coulomb case.  Watari [7] presented an exact scheme for extracting viscous and dry friction 
estimates.  We recently derived an equivalent scheme and applied to a controlled experiment [9] and 
also an industrial linear-bearing system [8]. 

The methods above, however, rely on sufficient excursion magnitudes of the free-vibration 
response.  If enough damping is present, such responses may not be possible. To this end, it makes 
sense to develop methods for identifying friction parameters in forced oscillators.   Tomlinson and 
Hibbert [10] used the power dissipation to estimate Coulomb and hysteretic damping coefficients.  
Tomlinson [11] also used the distortions in the complex receptance plots to estimate damping 
parameters, and Chen and Tomlinson [D] proposed estimating damping parameters in nonlinear 
oscillators by using the displacement, velocity and acceleration output and formulating the output in 
terms of series of frequency response functions.  Iourtchenko et al. [A], based on Dimentberg [B], 
applied a harmonic balance analysis to generate identification equations.  Iourtchenko and 
Dimentberg [C] used stochastic averaging to identify nonlinear damping in-process when the 
excitation was random.  Stanway et. Al. [12] proposed a nonlinear least-squares estimator scheme 
which involves the on-line solution of several additional equations.  Yao et al. [13] obtained the 
Coulomb and viscous friction parameters by using a recursive nonlinear least-squares algorithm.       

This work employs the findings of Den Hartog [1] and Hundal [2] for the nonsticking response to 
harmonic excitation at resonance, and results in a simple algorithm for identifying viscous and 
dry-friction damping from mechanical vibration systems.  Both viscous and Coulomb friction are 
assumed to coexist.  The method uses an assumption that the viscous damping ratio is small enough 
that the frequency of damped oscillation is approximately equal to the undamped natural frequency.  
Numerical simulations of a model of an industrial linear-bearing system are conducted to estimate 
both the viscous and dry-friction damping existing in the system.  Experimental results are presented, 
verified and discussed.  The dynamic friction characteristics of the linear-bearing system are also 
examined. 

 
2 FORCED RESPONSE AND FRICTION IDENTIFICATION 
 

A mass-spring-damper system on a rigid surface with the Coulomb friction law can have either 
stable pure-sliding or stick-slip motion when subjected to harmonic base excitations (Hundal [2], 
Shaw [16], Marui and Kato [17]).  We consider a mechanical vibration system with an external 
viscous damper and dry-friction contact as a model of an industrial linear-bearing system with both 
viscous and dry friction chosen to represent the damping in the ball bearings and the linear guide.  A 
schematic diagram depicting the linear single-degree-of-freedom oscillator with viscous and 
Coulomb friction and base excitation is presented in Figure 1.   Our model is different from that 
presented in Hundal’s report [2], namely instead of placing the viscous element in parallel with the 
spring (i.e. between the moving base and the mass), we put both the viscous and Coulomb elements 
between the mass and ground.  The system is configured in accordance with the mechanical structure 
of the linear-bearing system.   The model of the system shown in Figure 1 consists of a second-order 
differential equation which is piecewise linear and solvable.  The equation of motion can be written 
as 
 

,                (1) 
where and  are the mass, damping coefficient, and spring constant,  is 
the base excitation motion and  is the Coulomb friction force.  Definition of the 
friction force for  is not necessary since sticking motion is not to be considered in this work. 

The governing differential equation shown above is essentially the same as that in Den Hartog [1].  
For the case of , 
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             (2) 

where  denotes the equivalent “friction displacement”. Den Hartog [1] showed that in 
certain parameter regimes, there exist nonsticking responses with peak values , which occur at the 
turning points.  The value of  is governed by  
 

               (3) 

where  and  are parameter functions independent of the Coulomb friction, and can be 
represented as  
 

             (4) 

 

               (5) 

where  is the inverse response function with pure viscous damping: 
 

               (6) 

 
In the above expressions,  is the nondimensional damping ratio, , and 

represents the frequency of damped oscillation.  
Note that  and  in Eqs. (4) and (5) are functions of , , and  only.  Given a system with 

fixed parameter values, these parameter functions can be treated as constants in the derivation of the 
estimate algorithm. 
    As such, we propose an identification approach based on the analytical input-output expression (3).  
We assume that  is small, which is reasonable for the linear-bearing system to be investigated [18].   
Meanwhile, from Eq. (5),  when  and .  Experimentally, if we excite a low 
viscous-damping system near its resonance such that , we can assume  (when 

).  (In fact, as and , , which is small compared to  in Eq. (3).)   
Neglecting H at resonance, the input-output amplitude relationship in Eq. (3) reduces approximately 
to 

 

                  (9) 

 
Hence,  and  approximately satisfy a linear relationship, from which the slope and intercept 
define  and  (and thus  and ). 

Under conditions corresponding to two excitation levels with the same frequency (close to the 
damped natural frequency) with input output pairs denoted as (Y1, x1,) and (Y2, x2), we have 
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                 (10) 

 

                 (11) 

whence 
 

                  (12) 

and 
 

.                 (13) 

 
If , then, using Eq. (6), Eq. (12) is approximated in terms of  as 
 

.                 (14) 

 
Also,  reduces in approximation to 
 

                 (15) 

 
It makes sense to use this approximation if the assumption  is employed, without clear 
distinction of whether  or  in the experimental test.  If more than two input-output 
amplitude pairs are measured, the intercept and slope of Eq. (9) can be estimated by a least-squares 
fit of the  data. 

While the proposed method is based on the analytical results of Den Hartog’s work, the 
identification algorithm is very simple and easy to be implemented provided that the target system 
behaves closely to the Coulomb plus viscous model.  In implementing the identification process, the 
system is required to be excited at the resonance. Such an excitation frequency requirement is also 
needed in the methods proposed by Tomlinson for more accurate estimations [10-11].  In the next 
section, we present numerical verifications and a variational study, focusing on the amplitude 
perturbations.  These numerical studies will be followed by experiments with a linear-bearing 
system. 
 
3 NUMERICAL INVESTIGATIONS AND ERROR ANALYSIS 
 

In this section, we investigate the forced-resonance algorithm numerically.  First, we apply the 
input-output amplitude relationships listed in Table 1 to the forced-resonance algorithm presented in 
Eqs. (13)-(14).  The input-output relationships shown in Table 1 were obtained using the analytical 
relationship (3), while numerical integrations with respect to the system governing differential 
equation (Eq. (1)) were conducted occasionally to assure the occurrences of the pure-sliding motion.  
Numerical values of system parameters corresponding to Eq. (1) are 

.  The estimated results as well as the accuracies are 
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listed in Table 2.  Note that to implement the estimating process, we substituted  and , 
rather than , into Eqs. (13) and (14).  Meanwhile, for calculating “ ”, the exact expression 
(4) was adopted instead of the simplified expression (15).  The estimated results changed very little 
if the simplified expression (15) was used.  With the chosen value of , there is no big difference 
between the damped and undamped natural frequencies, and the assumptions needed for applying 
the method are valid.  It can be seen in Table 2 that the estimation results are very close to the known 
parameter values, which shows the reliability of the identification algorithms. 

Next, we would like to understand how amplitude measurement perturbations could affect the 
accuracy of estimation.  To that end, we start with a variational study of the input and output 
amplitudes to obtain, to first order, the error induced in the identification equations.  For the 
variational study, we conduct Taylor expansions with respect to Eqs. (13) and (14).  Keeping first 
order terms, we have  
 

            (16) 

 
and 
 

            (17) 
 
in which 
 

 

 

 

 

 

 

 

 

 

 
From Equations (16) and (17), we realize that to minimize the variation of , i.e. , we should 

maximize the difference of response amplitudes, . Also,  depends weakly on the output 
error if  is small.  Moreover, careful inspection of the expressions of , , , , , and  
indicates that to minimize , we need to maximize difference between input amplitudes, , 
which again will minimize .  This makes sense, since we are approximating the slope and 
intercept of a straight line.  Therefore, to increase the estimation accuracy in this 
forced-identification method, we would want to take two input-output amplitude pairs as separated 
as possible.  Furthermore, the quantities A through E decrease with decreasing , through the value 
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of G, and hence we expect smaller errors in the Coulomb parameter if  is small 
Anytime there is error in the measurement, there will be error in the estimated parameters.  While 

not presented here, we studied numerical examples to gain some insight into how measurement 
errors affect the identification results.  In an example, a 5% of single amplitude-measurement  in  
led to a 22.64% error of the Coulomb-parameter estimation, .  The sensitivity of the Coulomb 
parameter to the measurement error can be found in other schemes [8].  This happens here because 
the Coulomb parameter estimation is dependent on the estimation of .  In the next section, we will 
apply this estimation method to a linear bearing experiment.   
 
4 EXPERIMENTAL ESTIMATIONS 
 

Figure 2 shows a photograph of the experimental set-up investigated in this study.  The 
experimental system consists of two linear-bearing systems (THK SR20UU with four linear motion 
(LM) blocks), an electromagnetic shaker with a power amplifier (B&K 4809 and 2706), two LVDTs 
with signal conditioners (Rabinson-Halpern Co., Model 210A-0500), an accelerometer with a 
charge-type amplifier (B&K 4371 and 2635), and a data-acquisition system including software and 
hardware (LabVIEW and NI-AT-MIO-16E-10).   The LVDTs were used to sense the displacement 
responses and the accelerometer was adopted to check if the responses are close to pure sliding 
motions. The resolution of LDVT after the quantization step in data-acquisition process is about 
3 m.     

Mechanical parameters of this system are  kg,  N/m,  Hz.  Here, the 
stiffness of the helical springs was determined by a free-vibration test.  Knowing the value of the 
sliding mass, the stiffness can be calculated based on the system’s natural frequency while 
neglecting the viscous damping effect.  We consider a Coulomb plus viscous oscillator with “low 
damping” for small  in this paper.  Our previous work with helical springs [8] suggests to us that 
the “low damping” in the bearing is much larger than what would be in the spring.  To this end, the 
damping in the helical spring will be neglected in this study. 

The linear-bearing systems are unique motion systems in which linear motion is supported by 
rolling contact elements. Linear-bearing systems have been widely employed as components of 
machine tools, machining centers, industrial robots, semi-conductor production equipment, medical 
equipment, and many other electronically controlled devices.   To design a satisfactory controller 
that accounts for the effects of the intrinsic resistance, complete understanding of the friction 
dynamics of the system is necessary.  Existing reports on the investigations of dynamic features of 
the linear-bearing systems include references [19-21]. These, however, focus primarily on the design 
procedures and concepts of the linear-bearing systems.  

In conducting our experimental investigations, harmonic signals were applied to drive the 
electromagnetic shaker so as to acquire nonsticking responses of the sliding table. Nearly 
pure-sliding motions were achieved.  Such pure sliding motions were nearly sinusoidal except for 
some distortions occurring at direction reversals [16]. 

Next, the excitation levels were varied while the frequency was held fixed at resonance.  Thus, the 
 assumption made in the forced-resonance method was fundamentally satisfied.  Five sets of 

input-output amplitude responses were obtained. Every input (or output) time-domain history, which 
lasted more than ten forcing cycles, was applied to an averaging process to gain one input (or output) 
amplitude measurement. Finally these input-output amplitude pairs were recorded.   In order to gain 
more confidence in the method, we conducted many more experiments near the system’s resonance.  
The experimental input-output amplitude relationships are plotted in Figure 3.  In this figure, every 
small square represents one pair of input-output amplitudes.  Each pair of input-output amplitudes 
was obtained by averaging time-domain histories sustaining more than ten forcing cycles.  

When conducting the experiments, we increased the excitation levels stepwise to obtain various 
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input-output amplitude responses.  We repeated this sweep several times and data were plotted in the 
chronological order of the experimental process.  Therefore, each slanted line in Figure 3 depicts an 
amplitude sweep.  There are five excitation levels in each amplitude sweep, and totally, ten similar 
amplitude sweeps are contained in Figure 3.  Connecting the data with lines in a chronological plot 
in Figure 3 brings forth interesting information.  Since the lines are nearly parallel, the slope does 
not change much in time, and hence  does not change much in time.  Since the lines are not 
coincident, they are shifting up and down in time, such that the intercept changes in time, meaning 
the Coulomb friction parameter changes in time.  The Coulomb friction parameter seems to vary 
more than the viscous friction parameter.  However, the variation in the Coulomb parameter occurs 
on a slow enough time scale that the lines remain nearly parallel.   

In the same figure, the bold slanted line is the least-squares linear fit of the input-output data.  
Based on Eq. (9), the slope of this bold line is closely related to the averaged estimation of , 
whence we obtained .  The  estimation is then applied to obtain the parameter  
(  calculated from Eq. (4)) which in turn is applied to obtain the intercept of Eq. (9) for the 

 estimation.  We obtained an averaged estimation of  mm.  This value can be converted 

into an averaged friction force  N.  The producer of the linear-bearing systems has 
provided a conservative gross value of the maximum end-seal resistance, which is equal to 3.4 N for 
the product we picked [18].  This value is referred to a single LM block, but we have four LM blocks 
in our experimental set-up. Therefore, the maximum friction force could be as large as 13.6 N based 
on the manufacturer’s data.     Thus, the estimated value is in the reasonable range.  The maximum 
friction force depends greatly on whether the bearing seals are mounted.  In this study, the friction 
force can be attributed mainly to the resisting force exerting by the end seals [18].  Meanwhile, 
people might be puzzled by the seeming high friction force (4.39 N) seen in this study in comparison 
with the loading (about 10 N).   These two values give the coefficient of friction to as high as 0.439.  
The value is reasonable because of the extremely light loading case that corresponds to unbounded 
and unspecified coefficients of friction based on the manufacturer data [18] (i.e. the bearings are 
resistive even when unloaded). 

According to the theory, we expect the data in Figure 3 to fall on a straight line.  But we see a 
distortion in the curve, mostly at higher amplitudes.  The lower-amplitude portion of the ,  plot 
shown in Figure 3 indicates that for a rather robust range of input/output amplitudes, the slope and 
intercept do not change much.  For the larger amplitude response, the deviation from the linear ,  
plot is more concentrated.   The deviation from the straight line at higher amplitudes may arise from 
the small  assumption, or possibly from other sources of nonlinearity, such as unmodeled dynamic 
friction effects, or stiffening springs.  In order to clarify whether the deviated part of the data is 
caused by the simplification of Eq. (3) via a small  assumption, we did a simulation of the ,  
plot for a nonlinear analytical input/output relationship with parameter values as identified in this 
experiment.  The analytical curve is presented as a bolded-dotted line in Figure 3.  It can be seen in 
Figure 3 that the simulated ,  analytical curve is visually indistinguishable from the straight line 
obtained from the least-squares criterion.  Hence the deviation from linearity is not due to small-  
approximation in the identification scheme, used in both the simulation and the experiment, rather it 
is due to modeling error.  Furthermore, simulations with a stiffening spring did not generate a 
deviation from a linear x, Y plot.  However, since the deviation from ,  linearity is more 
concentrated for larger amplitude of  and , it is possible that the system behavior deviates more 
from the model behavior in that range. 

To this end, for the sake of comparison, we estimated the parameters from the lower 4/5, 3/5, and 
2/5 of the data, taken to be portions of the data that are on progressively straighter portions of the 
data set.  The estimates corresponding to these data subsets were  and  mm 

(  N),  and mm ( N), and  and 
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mm ( N), respectively. 
In the next section, we perform additional experiments using the free-vibration decrement method 

and the indirect measurement of the dynamic friction behavior.  The results are used to verify the  
and  estimations made by the forced-resonance identification approach. 
 
5 VERIFICATION OF THE EXPERIMENTAL ESTIMATIONS  
 
5.1 Free Vibration Decrements  
 

A primary motivation for developing a forced-vibration identification approach as an alternative 
to the free-vibration approach is that some systems have parameter values which do not produce 
sufficient oscillatory excursions needed for the free-vibration method.  To validate the experimental 
damping estimations made in the last section, we first applied the free-vibration decrement method 
[8,9] to the same linear-bearing system.  However, the experimental parameters used in Section 4 
were not suitable for the free-vibration test since the helical springs were too soft to provide enough 
free oscillation excursions for the estimating process.  (This is the case even though the viscous 
damping component is deemed “small”.)  So we replaced the helical springs with a stronger set, 
which had a stiffness of 4365 N/m rather than 1568 N/m. According to the motivation, we chose to 
retain the softer springs in the forced-vibration study and then switch to the stiffer springs to enable a 
crosscheck based on the free-decrement approach.    Based on the assumption that the damping in 
the bearing dominates the damping in the springs, we assume that the system damping coefficients 
change little due to the change of system stiffness.  It it possible, however, for unmodeled dynamic 
friction behavior to vary somewhat with the oscillation frequency, which changes with the new 
springs.  Nonetheless, we conducted a set of free-vibration tests with stiffer springs in order to 
estimate the damping information from the system.  

Each free-vibration test sustained about two periods of oscillation.  Therefore, from the extreme 
excursions, five amplitude measurements were recorded in each test.  These five free-vibration 
amplitudes provided two sets of viscous and dry-friction estimates in accordance with the decrement 
method [8,9]. We present the results in Table 3.  In Table 3, the first two columns of data, 
representing one set of damping estimations, were obtained from the first four amplitudes in each 
free-vibration test, whereas the last four amplitudes in the same test generated the last two columns 
of data. 

We calculated the average value of estimations addressed in Table 3.  First the averaged , 
denoted as , is equal to 0.0819, which is the mean value of 34 estimations.  Similarly, the 
averaged , is  mm.  N.   Since  and  
depend on the stiffness, which was changed in order to perform the decrement method, these 
numbers need adjustments in order to be compared with the estimates obtained using the 
forced-resonance method.  As such, the viscous damping factor and Coulomb-friction distance 
estimates , in terms of the soft-spring system, are and 

 mm.  Thus, good agreements exist between the viscous estimates 

obtained from the free-vibration decrement method, , and the corresponding results obtained 
from the forced-resonance method with either the lower 3/5 or 2/5 part of data (where the 
input-output data deviated little from the straight-line model), namely  and  in the previous 
section.  Similar consistencies also exist among corresponding Coulomb-friction estimates using 
both free- and forced-vibration identification schemes. 

Table 4 summarizes the average experimental estimations obtained by the forced-resonance 
identification algorithm and the free-vibration algorithm together.   
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5.2 Dynamical Friction Behavior 
 

In interpreting our results, it may be worthwhile to understand the friction behavior in the system.  
Although the identification model consists of Coulomb and viscous friction, the true friction 
dynamics existing at the interfaces of the linear-bearing system is completely unknown.  In order to 
characterize the friction, it must first be measured.  To do this, we calculated the friction force from 
the system’s ODE together with motion measurements [22].  Alternatively, we could measure the 
friction with a load cell, but since the friction element is somewhat bulky linear bearing, we opted 
for the former method.  The indirect friction-measurement method, while requiring several motion 
signals to be manipulated in accordance with the equation of motion, has provided consistent friction 
measurement as compared to the direct method in other frictional vibrating systems [22,23].   

Generalizing Eq. (1), we consider the unknown friction  to depend on both the relative 
displacement and velocity at the contact interfaces.  The experimental parameters are  kg, 

 N/m, and . Additionally, calculation of the friction force from Eq. (1) required 
the measurement of all of the motion signals: input and output displacements, , , the 
velocity response, , and the acceleration response .  In this regard, two LVDTs were used to 
sense the input and output displacement responses, whereas an acelerometer was used to measure the 
acceleration.  The velocity signal was obtained by differentiating the displacement signal, and was 
then smoothened with a five-point moving average.  By looking at harmonic responses of a 
mass-spring system in an air track, and ensuring that the displacement and acceleration were 180 
degrees out of phase, we corrected the phases of sensor signals.  

Figure 4 illustrates a typical time-domain history that contains all the motion responses and the 
extracted friction force.  Figure 5 depicts the relationship between the calculated friction force and 
the relative velocity.  In the friction force presented in Figures 4 and 5, an averaged viscous-damping 
component with  has been applied and removed from the friction data.   

The motion exhibited in Figure 4 is close to a pure sliding motion.  This can be justified by 
examining the velocity or acceleration signals [24].  Furthermore, there are many dynamic friction 
features addressed in Figures 4 and 5.  For example, there are slanted transitions in force-velocity 
characteristics in the vicinity of zero velocity in Figure 5.  The occurrence of this slanted hysteretic 
feature can be caused by contact compliance [25, 26].  Contact compliance may arise from elastic 
deformation near the contact point, which in this system could mean the contact between end seal 
and linear guide, internal components, or in the surrounding structures. 

Moreover, though it is not included here, the contact compliance can be estimated from a 
friction-displacement plot or from an impulse test at a sticking condition [24,25].  We have 
estimated the value of the contact stiffness of this system with both methods. The approximate 
contact stiffness is N/m.  This value can be placed in the following equation for estimating 
the transition velocity corresponding to the onset of macroscopic sliding motion [24,25] 

 

               (18) 

 
where  represents the excitation frequency,  is the kinetic friction component,  is the 
maximum displacement of the sliding mass, and  denotes the contact stiffness.  If we take 

 N/m,  m,  rad/s estimated from Figure 4***Check 
number),  N (estimated from Figure 5), the estimation of transition velocity turns out to be 
0.028 m/s, which corresponds well to the transition velocity shown in Figure 5 (about 0.024 m/s).  
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Agreement of the transition velocity supports the contact compliance model.  Dynamical friction 
associated with contact compliance is not rare to observe; other recent reports include, e.g. Hinrichs, 
Oestreich, and Popp [26], Harnoy et al. [27], McMillan [28], and Feeny and Kappagantu [29]. 

There are other friction dynamics presented in Figures 4 and 5.  For instance, stochastic force 
fluctuations can be observed during the sliding phase in both figures.  Many researchers [25,27,32] 
have reported similar stochastic sliding friction.  An additional memory effect emerges in Figure 5 
manifesting itself by the difference of friction magnitudes at accelerating and decelerating portions 
of motion.  The friction magnitude decreases immediately prior to the slip-to-stick transition.  This 
feature suggests that the friction force hysteresis depends not only on the contact compliance, but 
also on the history of sliding. 

The feature is obvious in the stick-slip case.  In Figure 6, the force reaches its peak in the 
stick-to-slip transition, so the small hysteresis loops are clockwise.  The hysteresis due to contact 
compliance can appear as small loops in the vicinity of zero velocity in the f-v plots of stick-slip 
responses [25,26].  Thus, the hysteresis remaining is due to other effect. 
Since we accounted for the viscous friction component by using the identified value of 

( ) in the force computation, we would expect the force to be flat, on the average, 
during the sliding interval.  Nevertheless, the slope of the data in Figure 3 indicates a larger effective 
viscous term for low-amplitude responses than for high-amplitude responses.  (***I deleted this 
because I don’t understand it***)  Our higher amplitude responses are consistent with that of Figure 
5 regarding the average force level and the contact compliance behavior.      Overall, the Coulomb 
and viscous friction are consistent with the estimated friction histories.  Since the friction behavior 
seems to include small dynamical effects not included in the straight Coulomb and viscous model, it 
is reasonable to have some deviation.  Indeed, contact compliance and other effects can have an 
effect on the input-output dynamical behavior of the oscillator [30,32-37], and so the response 
amplitudes of the compliant system will differ slightly from those of rigid-contact system, even if the 
contact is quite stiff.  To adequately address friction dynamics observed in the linear-bearing system, 
friction models other than Coulomb plus viscous can include, for instance, the models of Soom and 
co-workers [38], the state variable models of Rice [39], Deterich [40], and Ruina [41], the bristle 
models of Canudas de Wit et al. [42] and Haessig and Friedland [43], the normal vibration models of 
Oden and Martins [44], Tolstoi [45] and Dankowicwz [46], and the contact compliance models 
[25-27].  Ultimately, we have to choose a model before we estimate model parameters.  We feel that 
the Coulomb plus viscous is a very worthy model to use as a starting point, as its simplicity makes 
dynamical analyses tractable.   As such, this work is that of damping-parameter identification, rather 
than friction-law identification.   
 
 
 
6 CONCLUSIONS 
 

In this paper, a friction-parameter identification algorithm was proposed. The identification 
method is suitable for harmonic excitations of a single-degree-of-freedom system with Coulomb and 
viscous friction and linear stiffness.  To apply the method, the excitation must occur at resonance, 
and the contribution of the viscous damping must be low enough such that .  The resulting 
identification equations represent a linear relationship between the input and output amplitudes, from 
which the slope and intercept lead to estimates of the Coulomb and viscous friction parameters.  

Numerical simulations of the method with respect to an unperturbed system illustrated excellent 
accuracies in damping estimations.  In the presence of noise, widely spaced input-output data lead to 
the best results for two-point estimations.  

We applied this new forced-identification algorithm to a linear-bearing system.  The damping 
estimations obtained by this method were repeatable.  Furthermore, in the same linear-bearing 
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system, results estimated by the forced-resonance method  were consistent with those obtained by 
both a free vibration method and by indirect friction force measurements, even though the latter 
revealed the presence of subtle dynamical friction behavior.  We found that although the viscous 
damping factor was considered “small” enough for the resonance method, the total damping was 
large enough that the free-vibration method could not be applied without modification of the system 
stiffness. 

The forced resonance method is reliable when applied within the confines of the analysis 
assumptions.  It is meant to augment the toolbox of vibration-based Coulomb and viscous damping 
identification methods.  The simplicity of the method is on par with common methods for estimating 
viscous or Coulomb parameters in linear oscillators with single-source damping, and the 
dual-damped free-vibration decrement method.  Since the method is based on an analytical solution, 
it can also serve as a benchmark in the continuing development of damping identification schemes 
for more general systems, for which analytical solutions may not be available. 
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Figure 1: A schematic diagram depicting a single-degree-of-freedom  
oscillator with viscous, Coulomb friction and base excitation. 
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Figure 2: A photograph of experimental set-up illustrating the linear-bearing systems, the 

electromagnetic shaker, the LVDTs, etc. 
 
 
 

Table 1: The input/output amplitudes of a numerical example 
 

  
  
  
  
  

 
 

Table 2: Numerical simulation results showing high accuracies in estimations using the 
forced-resonance method and amplitude pairs ( , ) of Table 1. 

 

   

0.2 0.199989 0.0055% 
   

4.0 3.99978 0.0055% 

   

2.0 2.0028 0.14% 
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Table 3:  The damping estimations of the linear-bearing systems obtained from the 

free-vibration decrement method.  The left-most estimates are for the higher 
amplitude segment of the free response, and the right-most estimates are for the 
lower amplitude segment. 

 

No.   (mm)   (mm) 

1 0.0990 0.566 0.0634 0.965 
2 0.0962 0.581 0.0607 1.010 
3 0.0911 0.683 0.0712 0.887 
4 0.0884 0.719 0.0678 0.949 
5 0.0944 0.639 0.0666 0.948 
6 0.0793 0.863 0.0828 0.828 
7 0.0804 0.839 0.0739 0.906 
8 0.0849 0.791 0.0741 0.898 
9 0.0850 0.789 0.0788 0.847 
10 0.0813 0.851 0.0842 0.825 
11 0.1045 0.532 0.0639 0.992 
12 0.0841 0.808 0.0753 0.899 
13 0.0836 0.832 0.0854 0.817 
14 0.0969 0.649 0.0713 0.909 
15 0.1078 0.513 0.0674 0.951 
16 0.0924 0.707 0.0729 0.904 
17 0.0963 0.703 0.0802 0.850 

 
 

 
 
 
Table 4:  Experimental estimations of damping parameters of the linear-bearing system. 
 

Method   (N) 
Resonance method (least-squares fit 
with the whole data) 

  

Resonance method (least-squares fit 
with the lower 3/5 of the data) 

  

Resonance method (least-squares fit 
with the lower 2/5 of the data) 

  

Free-vibration decrement method   
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Figure 3: The experimental input-output amplitude relationships and the least-squares damping  

estimation. 
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Figure 4: A typical time history depicting responses of input, output, and the calculated 
friction force for a sliding case. 

 
Figure 5: The friction-velocity plot showing abundant dynamics including contact 
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compliance, memory effect, stochastic sliding, etc., for a sliding motion case. 

 
Figure 6: The friction-velocity plot for a stick-slip response. 


