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ABSTRACT 
 

This study makes use of an energy balance to identify damping parameters in mechanical vibration 
systems.  By balancing the energy input as registered in the force-displacement relationship of the real 
system against the energy lost theoretically in a damping model with unknown parameters, the 
identification algorithms are developed.  We apply the estimation equations to both numerical and 
experimental systems, modeled with Coulomb plus viscous damping, at resonance to show the 
effectiveness and reliability of the new identification method.  The equivalent viscous and dry-friction 
damping estimates obtained from the experimental system are compared to those obtained from the 
forced-resonance method to show their consistencies. 
 
 
1. INTRODUCTION 
 

Friction parameter estimation is based on the analysis of measured input and output responses.  Our 
interest is in identifying parameters of basic friction models by making use of vibration properties.  To 
this end, free vibration decrements have been exploited for systems with linear stiffness elements and 
“small” damping.  Here, “small” damping means two things: the free response has sufficiently many 
extreme excursions that can be measured with good resolution; and the frequency of damped oscillation is 
approximately equal to the undamped natural frequency . The classic logarithmic decrement scheme 
for viscous friction identification goes back to Helmholtz [1] and Rayleigh [2], while the constant 
decrement [3] can be used for estimation of Coulomb damping.   

Jacobsen and Ayre [4] developed an approximate scheme for estimating both viscous and dry friction 
quantities from the free-vibration decrements by noting that the viscous friction dominates in the large-
amplitude responses, and that Coulomb friction dominates in the small-amplitude oscillations. An exact 
formulation for the simultaneous estimation of Coulomb and viscous friction in oscillators has since been 
derived [5-7]. 
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Free vibration decrements are not applicable if the damping is strong enough to preempt sufficient 
oscillations.  As such, it makes sense to develop schemes for identifying friction parameters in forced 
oscillators.  For instance, Stanway et al. [8] proposed identifying Coulomb and viscous damping 
parameters with a nonlinear least-squares scheme, which involves the on-line solution of several 
additional differential equations.  Yao et al. [9] identified the Coulomb and viscous friction parameters by 
applying a recursive nonlinear least-squares algorithm.  Chen and Tomlinson [10] proposed estimating 
damping parameters in nonlinear oscillators by utilizing the acceleration, velocity and displacement 
output and formulating the output in terms of series of frequency response functions.  Tomlinson and 
Hibbert [11] applied the power dissipation to estimate Coulomb and hysteretic damping coefficients.  
Tomlinson [12] also measured the distortions in the complex receptance plots to identify damping 
parameters.  Iourtchenko and Dimentberg [13] used stochastic averaging to identify nonlinear damping in-
process when the excitation was random.  Iourtchenko et. al. [14], based on Dimentberg [15], applied a 
harmonic balance analysis to generate identification equations. 

A scheme for extracting Coulomb and viscous friction parameters from forced oscillations based on the 
analytical solutions of Den Hartog [16] and Hundal [17] for the nonsticking response to harmonic 
excitations was formulated in our previous work [18].  We proposed an approximate forced-identification 
algorithm denoted as the analytical forced-resonance method.  The analytical forced-resonance method 
employs an assumption of small viscous damping of the real system leading to a linear relationship 
between amplitudes of harmonic input and output motion.  Analytical, numerical and experimental studies 
have shown the analytical forced-resonance method to be effective.   

The limitations of the analytical forced-resonance method are that it is not applicable for damping 
which is not “small,” it relies on analytical solutions of single-degree-of-freedom linear systems, and it 
does not treat friction models other than Coulomb plus viscous (see for example, references [19-24]).  The 
need for analytical solutions can limit the identification of more complicated systems.  Nonetheless, since 
the analytical forced-resonance method is based on an analytical solution, it can also serve as a benchmark 
in the continuing development of damping identification schemes for more general systems, for which 
analytical solutions are not available. 

In this paper, we propose an energy balance as an alternative to analytical solutions for identifying 
friction parameters.  We apply the energy-balance formulation to systems with co-existing Coulomb and 
viscous friction as an example.  There are other more advanced friction models that can capture 
complicated friction dynamics, such as the work of Soom and co-workers [25], the state-variable models 
of Rice [26], Deterich [27], and Ruina [28], the bristle models of Hassig and Friedland [24] and Canudas 
de Wit et al. [29], the normal vibration models of Tolstoi [30], Oden and Martins [21] and Dankowicwz 
[31], and the contact compliance models [22-24, 32-35].   

In developing the energy-balance method, the energy input of a physical system is registered in the 
force-displacement relationship.  This energy input is balanced against the energy loss of a theoretical 
model, consisting of viscous damping and dry friction components.  From this balance of energy, the 
estimation equations are derived, and applied to numerical and experimental systems in order to examine 
the reliabilities of the new identification method. 

  
2. THE ENERGY-DISSIPATION IDENTIFICATION 
 

The energy-dissipation identification method involves the balance between the energy dissipated by the 
friction force against the energy input to the system.  This balance results in the “equivalent viscous and 
Coulomb damping” parameters, reminiscent to the traditional “equivalent viscous damping” concept seen 
in undergraduate textbooks, such as [36].  In the traditional approach, an equivalent viscous model 
replaces another nonlinear damping model such that there is an energy balance.  The measured response 
amplitude and the nonlinear damping model are used together with a harmonic response assumption to 
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compute the equivalent viscous damping coefficient.  In this work, we suggest balancing energy using 
measured inputs and outputs to identify the coefficients of an assumed nonlinear damping model. 

Consider a damped-forced oscillator with the following equation of motion: 
 

,              (1) 
 
where m is the mass, k is the stiffness, x is the displacement, dots represent derivatives with respect to 
time, and  is the excitation.  Multiplying (1) by dx and integrating along the motion path C yields the 
following energy-balance equation 
 

. 

 
To assist the implementation of integration, the integration variable can be changed to time, thus 
 

.   

 
Here  indicates a finite time interval.  We define 
 
 

; ; , 

so that equation (1) can be expressed 
 ,   (2) 

representing a balance between the dissipated, applied energy, and the sum of the kinetic and elastic 
energy, respectively.   The terms in Eq. (2)can be quantified if  (and its derivatives) and  are 
measured.  Then, by integrating and balancing both sides of Eq. (2) while expressing  using an 
assumed friction model with unknown parameters, an identification equation for the parameters can be 
acquired.  In order to improve the estimation accuracy, the excitation level can be varied to obtain more 
identification equations than the number of unknown parameters, so that the least-squares criterion can be 
applied.  Details will be given later.     While We requires acceleration, m and k, for bounded input and 
response we have  and  as .  Thus for long measured time histories, We 
can be neglected. 
      On the other hand, when  and x(t) are periodic, one can integrate Eq. (2) over a cycle of periodic 
motion.  In that case, the contribution of the conservative components of the oscillator, “ ”, is zero, 
so that the following energy-balance equation can be obtained 
  

,            (3) 

 
where T represents the period periodic response.  Integrating and balancing both sides of equation (3), 
using measured data and a friction model to express  with unknown parameters, leads to an 
identification equation for the parameters.  The mass and stiffness parameters need not be known for the 
estimation of damping parameters. 
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This paper focuses on the case for which the input is periodic.  We will outline the details of the 
estimation in an example. 
 
2.1 Base-Excited Oscillator with Coulomb and Viscous Damping 

 
A schematic diagram showing a base-excited oscillator together with damping components is presented 

in Figure 1, in which the Coulomb friction and viscous damping are chosen to represent the damping 
effects existing in an industrial linear-bearing system [37].  The model shown in Figure 1 differs from that  
of Hundal [17], with the viscous and Coulomb element between the mass and ground instead of parallel 
with the spring (i.e. between the moving base and the mass).  The equation of motion of the oscillator can 
be written as  
 

,    (4) 
 

where  represents Coulomb friction for pure sliding with no difference between the static and 
kinetic components, c is the viscous damping coefficient, and  represents the harmonic 
base input.   

Applying the left hand side of equation (3) we acquire 

,          (5) 

 
which is the energy supplied per cycle, determined by the measured motion signals  and  and the 
stiffness k.  In addition, the energy dissipated in the dual-damped oscillator during one forcing cycle is 

         

  (6) 
where  and  are defined by the time integrals  

, .          (7) 

As such, equation (3), , leads to  

             (8) 

Thus, the model of the energy dissipated by the damping forces of the physical system can be balanced 
against the energy supplied to the oscillator to produce a linear equation in the assumed damping 
coefficients.  Multiple test measurements,  and , i = 1, …, n, will lead to multiple coefficients 

, and , i.e. multiple versions of equation (8), which can be written in matrix form as  
,            (9) 

where  is a vector of elements , A is a matrix for which each row i has the pair of values , and 
 is the vector of unknown parameters.  The least-squares solution is 

 ,           (10) 
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provides an estimate of the parameters, along with a residual  that is generally nonzero.  The 
residual can serve as an indicator of the quality of the damping model.   In this case, it tells whether 
“ ” can closely represent  occurring at the contact interfaces [38].  Since the 
coefficients are obtained by integration, high-frequency noise is expected to be filtered, but low frequency 
noise can have more influence. 

Dividing equation (8) by , we see that a plot of  data versus  data is expected to be a 
straight line, with a slope of  and an intercept of .  (The slope and intercept of the affine least-squares 
fit of the data in this plot produces a numerically different, and slightly less effective, estimation of the 
parameters, but allows for a visualization of the linearity of the data.)  
 
2.2 Harmonic Input and Response  
 
In the special case when the input is harmonic, and the response is nearly so, it may make sense to make a 
harmonic approximation to equation (8). Substituting , , and 

 into equations (7) and (8), and dividing by X, yields 
 

.     (11) 
 
Defining , , , and , we can rewrite (11) as 
 

,    (12) 
 

Equation (11) would be used if the base excitation (or the applied force), , were known, while more 
likely Equation (12) would be used if  and  were known.  Equation (12) indicates a linear 
relationship between the input and output amplitudes in which the slope and intercept lead to estimates of 
the viscous damping factor  and the dry-friction parameter .  

The estimation strategy is to generate coefficients of equation (11) or (12) for many input-output cases, 
perform a least squares fit to a straight line, and obtain the damping parameters from the slope and 
intercept.   

At resonance, , and if we assume both  and  are approximately equal to , then  
 

   (13) 
 
represents a very simple identification equation. 

If there are two sets of data, equation (13) can be solved to obtain expressions for  and .  It can be 
shown that this estimation for  is the same as that of the analytical forced-resonance method [18], 
developed from analytical response expressions at resonance.  In this energy-balance formulation, we 
have made assumptions of harmonic response with a 90o phase angle for various input levels at the same 
excitation frequency. In the forced-resonance method case, we made a “small ” assumption, neglecting 

 effects.  The equation for  in the two-point harmonic energy-balance estimation at resonance and 
that obtained by the two-point analytical forced resonance method (this quantity was denoted as  in 
[18]) differ by a factor of , where  
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for small .  Indeed, as , .  Hence, the  estimations and the forced-resonance 
analytical method converge as  decreases.  This comment should be taken cautiously, since the 
Coulomb-only resonant response is unbounded [16].  However, it does suggest that the results for  
should be similar between the analytical scheme and the harmonic energy-balance scheme if  is small.   

The major difference between the energy balance and the analytical response methods is that the 
analytical response is needed in the latter case, but not for the former case.  Thus, the energy balance 
method can be applied to more general systems, such as those with nonlinear stiffnesses, or, for example, 
quadratic damping laws. The form of equation (8) or (12) depends on the damping model. 
 
3. NUMERICAL EXAMPLES  

 
We look at numerical examples using both the general integrated energy balance (IEB) and the 

harmonic energy balance (HEB) expressions.  For comparison with the analytical method [18], we are 
interested to examine the applicability on and off resonance, and with slip and stick-slip.     

 
3.1   Slipping Motion 
 

The parameters corresponding to Equation (4) were ; ;  and .  Hence 
 . We excited the system at resonance, i.e., , and the excitation levels Y 

were 0.2, 0.4, 0.8, and 1.0.  For the harmonic balance, we used the analytical expression presented in Den 
Hartog’s work [16] to obtain the response amplitudes X = 0.43611762, 0.93613738, 1.93614725, and  
2.43614923.  A numerical integration was also monitored to cross check if the pure-sliding motion indeed 
occurred.   

For the harmonic energy balance at resonance, the input-output amplitudes of four responses were 
processed to form equations (13).  A straight line was fit to the X, Y data, and from the slope and intercept, 
we obtained the estimates  and .   The mean of the absolute values of 
residuals in equation (13), normalized by the values of , was 5.10 e-6.  The source of the error includes 
the assumption that the motion is a single harmonic with an amplitude of den Hartog’s peak response 
solution and a phase of , as well as the round-off in the peak response numerals. 

To test the IEB method, we used a stiff, low-order ordinary differential equation solver of Bogacki and 
Shampine (ode23tb) provided in MATLAB (a commercial software) to numerically integrate equations (4) 
at a constant sampling rate after converting to first-order form [39].  Simpson’s rule was used to obtain 

 , and  from an arbitrary cycle of the signals. 

The least-squares estimation by equation (10) is  and .  The mean of 
the absolute values of the residuals (errors in each of equations (9)) normalized by the right hand side of 
(9), was 8.9 e-6, for numerically integrated noise-free numerical data with a perfect model.   The plot of 

 data versus  data was indistinguishable from a straight line. 
Although the time-domain output signals are not shown here, they were dominantly sinusoidal.  To 

verify this, we used the fast Fourier transform to check the power spectrum of the output amplitude 
response.  The fundamental frequency differed from the harmonics by more than 120 dB. 



 7- Jin-Wei Liang and B. F. Feeny, April 2005 

We also tried the off-resonance case.  The accuracy of the both integrated and harmonic identification 
equations was nearly as good as the resonant case, especially the former one.  For the same given 
parameters, the HEB gave  and .   The mean of the absolute values of 
residuals in equation (13), normalized by the values of , was 3.24 e-4.  In contrast with the HEB 
method, the least-squares from the IEB approach is  and , with a 
mean of normalized residual absolute values of 2.67e-4.  The method based on den Hartog’s analytical 
solution is more complicated to formulate off resonance, giving the energy balance added appeal over the 
analytica identification method [18]. 

 
3.2   Stick-Slip Motion 
 

To induce sticking, we increased the dry friction force and then integrated Eq. (4) directly with , 
, , , and .  Hence , , and .  The excitation 

levels Y were 0.09, 0.10, 0.11, and 0.12, and the response “amplitudes” were 0.002653, 0.011098, 
0.025645, and 0.045310.   

In implementing the harmonic balance identification equation (13), the phase between the excitation 
and response is needed, for which there is no clear definition since higher harmonics are significant during 
stick-slip motion.  Therefore, we excited the system at resonance and assumed the phase angle to be  
radians, as pure viscous case at resonance.  A line was fit to the X, Y data, whence the slope and intercept 
produced the estimates  and .   

The phase issue prompts us to turn to the more general IEB.  Because the integration expressions in 
Equations (3), (5), (6) all involve products of the velocity signal, the integrands become zero when 
sticking condition occurs.  

The least squares estimation corresponding to the stick-slip data gives  and 
.  The normalized mean of the absolute values of the normalized residuals was 1.56 e-4. 

The integrated method is more appropriate in this case since stick-slip responses deviate significantly 
from the pure-harmonic approximation.  An FFT test indicates that the most distorted case corresponding 
to four different excitation levels has the fundamental frequency 20 dB larger than other higher harmonics 
compared to the slip case in which a 120 dB difference appears. 
 
 
4. EXPERIMENTS 
 

Our experimental system consists of two linear-bearing systems (THK SR20UU) with four linear 
motion (LM) blocks, an electromagnetic shaker with a power amplifier (Brüel & Kjær 4809 and 2706), 
two LVDTs with signal conditioners (Rabinson-Halpern Co., Model 210A-0500), an accelerometer with a 
charge-type amplifier (Brüel & Kjær 4371 and 2635), and a data-acquisition system (NI-AT-MIO-16E-10 
and LabVIEW).  A photograph of the experimental set-up illustrating the linear-bearing system, the 
electromagnetic shaker, the base-excited plate, the helical springs, the LVDTs, and the accelerometer, is 
presented in Figure 2. 

In Figure 2, the LVDTs were used to sense the displacement signals of the sliding mass and the base 
excitation, whereas an accelerometer was adopted to check if the response was close to the pure-sliding 
motion.  Mechanical parameters of this experimental rig were m=1.042 kg, k=1568 N/m, Hz.  
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The resolution of LVDTs after quantization in the data-acquisition process was about 3 m.  The data-
acquisition system consisted of a PC and the LabVIEW software. 

Experimentally, the process required to implement the identification scheme included (a) finding the 
system’s resonance (b) obtaining steady-state responses for various input levels,  (c) measuring input 
and output displacements  and , (d) integrating energy coefficients, or extracting displacement 
amplitudes  and , and (e) seeking the least-squares solution of equation (9) or (13).  

Estimates obtained from the energy balance method will be compared to those obtained using the 
forced-resonance method [18] and the free-vibration decrement method.  Finally, in [18], the friction force 
was measured, and the resulting dry-friction force level  (comparable to the  coefficient Fk) was 
about  3.6 N, with evidence of some dynamical friction also involved [18,22]. 

 
4.1   Slip Response at Resonance 
 

First we apply the harmonic approximation.  The experimental ( ) input and response amplitude 
data shown in Figure 3 were obtained from the experimental linear-bearing system excited approximately 
at the resonant frequency [18]. There are totally 100 pairs of input and output amplitudes shown in Figure 
3. Every small square shown in this figure indicates one pair of input and output amplitudes, and every 
input or output amplitude was averaged over more than 10 forcing periods at steady-state [18].  Lines 
connect the points chronologically as recorded, and thus it seems that the intercept varies slowly, but not 
the slope (which varies a bit with amplitude), suggesting a slow variation in the dry-friction coefficient.  

Recall (Section 3) that the estimates of the viscous parameters corresponding to data shown in Figure 3 
are exactly the same for both the HEB and analytical methods at resonance.  The estimates of the viscous 
damping parameters are listed in Table 3.  These estimates are obtained by first applying the least-squares 
fit of equation (13) to the whole data set, the lower 4/5, 3/5 and 2/5 of the data set.  (The reason for doing 
this is that that X,Y plot seems to depart from a straight line for large amplitudes, suggesting a large-
amplitude departure of the model, either in the harmonic assumption e.g. due to nonlinear stiffness, or in 
unmodeled damping effects [18].)  Then we obtained the individual slope and intercept of the linear-
squares fits.  From these slopes and intercepts, the viscous-damping and dry-friction estimates were 
obtained accordingly and shown in Table 3.   

Next we apply the integrated energy balance.  The , , and  were determined by integrating the 
experimental signals.  The experimental response amplitude actually fluctuated on a small scale.   Hence, 
the integrations were performed over about twelve forcing periods. The input levels were Y = 4.318 mm, 
4.910 mm, 5.376 mm, 5.665 mm, and 6.090 mm, in the range of the lower third of the data for the slip 
case.  The least squares estimation corresponding to the slip data gives  and N.  Both 
are very close to the slip estimations based on the entire slip data set, which are slightly low for  and 
slightly high for  compared to the free-vibration decrement method and the friction measured in [18].  
The mean of the absolute values of normalized residuals was 0.00897.  The data is visually close to the 
anticipated linear profile (Figure 4). 
 
 
4.2   Stick-Slip Response 
 

We applied the IEB method to a mixed set of stick-slip and pure-sliding response signals.  The test 
conducted consisted of four excitation levels, Y = 2.750 mm, 2.625 mm, 2.914 mm, and 3.101 mm, at an 
excitation frequency of  Hz, slightly below resonance.  Among these excitations, the stick-slip 
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case corresponded to the lowest excitation level, whereas the pure-sliding cases corresponded to the other 
higher excitations. The least squares estimation corresponding to the stick-slip data gives  and 

N, slightly low on both parameters as compared to the slip data and the free-vibration decrement 
estimation, but still at the right order for a rough approximation.  The mean of the absolute values of 
normalized residuals of equation (9) was 0.0140.   

 
5. CONCLUSION 
 

This paper presents an algorithm for identifying damping information in forced vibration systems.  The 
identification is based on a balance between dissipated energy and energy input.  The input energy is 
obtained from measurements of the input and output displacement.  This applied energy per cycle of 
response is balanced against the dissipated energy, formulated from the damping model.  Balancing the 
measured energy input with the formulated loss leads to parameter identification equations. 

The input and output signals are integrated to create numerical coefficients in the identification 
equations, which are then solved for the parameters in the least-squares sense.  If the response is assumed 
to be harmonic, the input energy is a function of input and output amplitudes, frequency and phase, and 
the identification equations simplify, omitting the need for integrated coefficients.  This, however, is at the 
cost of accuracy, which shows in some examples.   

The harmonic response approximation works very well for the simulated and experimental linear 
oscillators with Coulomb plus viscous friction in sliding motion.  For the simulated case this was 
successful both on and off resonance.  The more general integrated energy method also worked on the 
numerical and experimental examples with stick-slip responses. 

The advantages of the energy balance approach for damping estimation are that it is founded on a 
simple concept, it is easy to apply, it does not require an analytical solution of the system, it does not 
require knowledge of the mass and stiffness (except in converting between ζ and c, and xk and Fk), it does 
not require iterations, and it is theoretically applicable to a class of systems with linear and nonlinear 
stiffness for which the damping model consists of basis functions and is linear in the coefficients of basis 
functions.  The latter statement was only supported, in this paper, in an example with linear stiffness and 
Coulomb plus viscous, for which the damping basis functions were  and .  

The harmonic energy-balance method described in this paper can be modified slightly to accommodate 
other friction and damping models.  Work is underway on identifying a compliant-contact friction model.  
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Figure 1: A schematic diagram depicting a single-degree-of-freedom  
oscillator with viscous, Coulomb friction and base excitation. 

 
 

 
 

Figure 2: A photograph of the experimental set-up illustrating the linear-bearing systems, the 
electromagnetic shaker, the LVDTs, etc. 
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Figure 3: The experimental input-output amplitudes measured nearly at the system’s resonance.  
 
 
 
 
 

Table 3: Experimental estimates of damping parameters of the linear-bearing system. 
 

data Both methods 
 

Analytical 
method  

Energy  
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whole data set 
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The 2/5 of the 

whole data set 

   

The free-

decrement method 
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Figure 4.  Data distribution of slip response experiments for the integrated energy balance. 
 
 


