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Abstract

The improved parametric identification of chaotic systems was investigated for the
double pendulum system. From recorded experimental response data, the unstable pe-
riodic orbits were extracted and later used in a harmonic balance identification process.
By applying digital filtering, digital differentiation and linear regression techniques for
optimization, the results were improved. Verification of the related simulation system
and linearized system also corroborated the success of the identification algorithm.

Keywords: parametric identification, harmonic balance, chaotic system, unstable pe-
riodic orbits, double pendulum.
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Parametric identification has been a very important method of the construction of math-

ematical models of vibration systems, theoretically and experimentally. Till now, most of the

methods of parametric identification of nonlinear systems focused mainly on free vibration,

random excitation or periodically forced steady state vibration behavior (references [1]–[7],

etc. ). In [1], nonlinear resonances by random excitations are utilized, but only part of the

parameters can be identified. Chen and Tomlinson [3] proposed a time series acceleration,

velocity and displacement model (AVD model), however with a narrowed investigation scope:

dry Coulomb friction, viscous damping and nonlinear stiffness. Also, other methods are ef-

fective within limited dynamical systems [4, 5, 6, 7]: weak non-linearity, time-consuming,

non-chaotic behavior, or unclear applicability to multi-degree-of-freedom system.

Recently, the application of chaotic behavior in parametric identification has begun to

be noticed and some related algorithms were developed. The fundamental property of de-

terministic chaos is that the chaotic set of a dynamical system contains infinite number of

unstable periodic orbits. Furthermore, the approximated periodic orbits can be extracted

by phase space reconstruction techniques [8, 9, 10, 11], which can be applied for identifica-

tion purposes and are of important advantage over a one-periodic-orbit steady state system,

since more periodic orbits can usually provide more information of a nonlinear system. The

unstable periodic orbits make the identification in chaotic world much simpler. Yasuda et

al. [12, 13] introduced an inverse applied harmonic-balance method to estimate parameters.

Plakhtienko [14, 15] also introduced a method of special weight function, by which the second

order differential equation could be converted to a series of linear equations if some periodic

orbits can be known a priori . In [14], it is noticeable that if harmonic functions are applied

as weighting functions, the rest of the procedure is identical to harmonic balance method.

Based on harmonic method, Feeny and Yuan [16] developed a general method for chaotic

systems that extracts unstable periodic orbits and then exploits harmonic balance method

to predict the parameters. Further more, they [17] applied this technique to an experimental

magneto-elastic oscillator; results were accurate and also noise-resistant. The present report

is based upon their algorithm. But unlike all of the existed applications, which are single

degree of freedom systems, the purpose of this report is to apply and examine the algorithm

on a multi-degree-of-freedom system with strong non-linearity.

The work discussed in this report is a further investigation and application of harmonic

balance to parametric excited chaotic systems. It includes two parts:

1. simulation verification, which is discussed in detail in the first part of the report [18];
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2. experimental verification, which will be introduced in this part of the report.

Simulation results have been very successful in applications to single degree-of-freedom sys-

tems. Different types of interpolation or approximation functions have been successfully

applied in detecting nonlinear terms in the governing equation of a dynamic system. As for

the experimental work, it involves a double pendulum system with parametric excitation,

which is strongly nonlinear. Since this double pendulum is a multi-degree-of-freedom one,

many new issues showed up in the experiment. Also, some modifications were applied to the

identification process in order to extend the theory to the multi-degree of freedom system.

Modifications included digital differentiation and other techniques of error reduction.

In the following parts of the report, the system configuration and equations of motion

will be described and derived. Then, the method and improvements that were used in

the identification will be described. Experimental apparatus and configuration will also be

explained. In the last two parts of the report, results will be presented and discussed, and

several conclusions were drawn upon discussion.

1 Description of the Double Pendulum System

2 Introduction

A schematic diagram of the double pendulum is shown in Figure 1. The first arm has mass

m1, centroid offset e1, arm length l1 ,and angular inertia Jc1 based upon the arm centroid

point. The second arm has mass m2, centroid offset e2, arm length l2, and angular inertia

Jc2. θ1 is the absolute angular displacement of the first arm and θ2 is relative angular

displacement of the second arm.

The two arms of the pendulum are supported and connected by low friction bearings.

The bearings are assumed to have two types of friction: dry Coulomb friction and viscous

damping. To the specific double pendulum that was used in the experiment, tests indicated

that the first arm bearings had dominantly Coulomb friction because of no oil lubrication,

and the second arm bearings had dominantly viscous friction due to full oil lubrication.

With these known properties, we can then obtain the non-dimensional governing differential
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Figure 1: Sketch of the double pendulum.

equations of this system:





φ̈1 + b11φ̈2 cos (φ2 − φ1)− b11φ̇
2
2 sin (φ2 − φ1) + b12 sin φ1

+b13 sin φ1ÿ + c11sign(φ̇1)− c12(φ̇2 − φ̇1) = 0

φ̈2 + b21φ̈1 cos (φ2 − φ1) + b21φ̇
2
1 sin (φ2 − φ1) + b22 sin φ2

+b23 sin φ2ÿ + c2(φ̇2 − φ̇1) = 0

, (1)

where φ1 = θ1 and φ2 = θ1 + θ2 are absolute angular deflections, B11 = m2e2l1
Jo1

, b12 =
g(m1e1+m2l1)

Jo1
, b13 = (m1e1+m2l1)

Jo1
, B21 = m2e2l1

Jo2
, b22 = gm2e2

Jo2
, b23 = m2e2

Jo2
, c12 = cr2

Jo1
, c2 = cr2

Jo2
,

Jo1 = Jc1 + m1e
2
1 + m2l

2
1 , and Jo2 = Jc2 + m2e

2
2; y is the excitation displacement of the

support with known frequency fe; and f(x) = sign(x) =





1, x > 0
0, x = 0
−1, x < 0

is a sign function

representing Coulomb friction . Function f(x) is valid if there are no sticks. For convenience

of the analysis, a non-dimensional form of the governing differential equation is desired. By

letting τ = 2πfet and Ω = 2πfe, then, d
dt

= d
dτ
· dτ

dt
= 2πfe

d
dτ

= Ω d
dτ

. Under a sinusoidal
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excitation y = a cos τ , where a is the excitation amplitude, equation (1) can be expressed as





φ1
′′ + B11φ2

′′ cos (φ2 − φ1)−B11φ2
′2 sin (φ2 − φ1) + B12 sin φ1

+B13 sin φ1y
′′ + C11sign(φ1

′)− C12(φ2
′ − φ1

′) = 0

φ2
′′ + B21φ1

′′ cos (φ2 − φ1) + B21φ1
′2 sin (φ2 − φ1) + B22 sin φ2

+B23 sin φ2y
′′ + C2(φ2

′ − φ1
′) = 0

, (2)

where φi
′ = dφi

dτ
, Bi1 = bi1, Bi2 = bi2/Ω

2 for i=1, 2, Bi3 = −bi3a, C11 = c11/Ω
2, C12 = c12/Ω

and C2 = c2/ω. The differential equation is non-autonomous because of the time dependence

of y(τ).

For identification purpose, the excitation signal y can be approximated by Fourier series

expansion of

y(τ) =
J∑

j=1

(Ej cos jτ + Fj sin jτ), (3)

where the coefficients Ej and Fj are unknown. For the present system with harmonic ex-

citation, y = E1 cos τ + F1 sin τ is adequate for identification. Since all the parameters

are unknown with the only exception of the excitation frequency, equation (2) can then be

transformed into




B11φ2
′′ cos (φ2 − φ1)−B11φ2

′2 sin (φ2 − φ1) + B12 sin φ1

+B′
13 sin φ1 cos τ + B′

14 sin φ1 sin τ + C11sign(φ1
′)− C12(φ2

′ − φ1
′) = −φ1

′′

B21φ1
′′ cos (φ2 − φ1) + B21φ1

′2 sin (φ2 − φ1) + B22 sin φ2

+B′
23 sin φ2 cos τ + B′

24 sin φ1 sin τ + C2(φ2
′ − φ1

′) = −φ2
′′

, (4)

where B′
i3 = Bi3E1 and B′

i4 = Bi3F1 for i=1, 2. For simplicity, we will denote Bi3 and Bi4 to

replace B′
i3 and B′

i4 in the later parts of this report. Equation (4) is then the desired form

for identification.

3 Method

The identification process is similar to the one used in the simulation system of parametrically

excited single pendulum [18], which contains data acquisition/post-processing, phase plane

reconstruction/extracting unstable periodic orbits, formation of the identification matrix and

the solution by the least mean square method. Due to some apparatus limitation, some signal

noise occurred during digitization. Therefore certain digital filtering techniques were applied

to the acquired signals. Details of the post-processing will be introduced in next section.

Other modifications are also applied to the double pendulum system for improvement of the

identification.

6



Due to the complexity of the non-linearity of the double pendulum equation (4), our un-

known parameters contain only those coefficients of terms of the differential equations, which

will greatly simplify the identification matrix. There are totally 11 unknown parameters in

the two differential equations, namely, B11, B12, . . . , B24, C11, C12 and C2. Similar to the

case in [18], the angular displacement θ1 and θ2 are variables in S1 (one dimensional sphere

space). However the angular speeds, accelerations and sin φi (i =1,2) belong to R1 (one

dimensional continuous real space). Hence, for any period k orbit (there may be multiple

orbits of same periodicity k, the Fourier series expression of the periodic orbits is

φ1,k,l(t) ≈ Ω1,k,lt +
a0,k,l

2
+

m∑

j=1

(aj,k,l cos
jωt

k
+ bj,k,l sin

jωt

k
) (5)

and

φ2,k,l(t) ≈ Ω2,k,lt +
c0,k,l

2
+

m∑

j=1

(cj,k,l cos
jωt

k
+ dj,k,l sin

jωt

k
), (6)

where Ωi,k,l, is the average rotation speed per cycle for the lth orbit of period k. By doing

so, the following equations can be obtained through the Fourier expansion of periodic orbits:

φ̇1,k,l(t) ≈ Ω1,k,l +
m∑

j=1

jω

k
(−aj,k,l cos

jωt

k
+ bj,k,l sin

jωt

k
), (7)

φ̇2,k,l(t) ≈ Ω2,k,l +
m∑

j=1

jω

k
(−cj,k,l cos

jωt

k
+ dj,k,l sin

jωt

k
), (8)

φ̈1,k,l(t) ≈
m∑

j=1

−j2ω2

k2
(aj,k,l cos

jωt

k
+ bj,k,l sin

jωt

k
), (9)

φ̈2,k,l(t) ≈
m∑

j=1

−j2ω2

k2
(cj,kl cos

jωt

k
+ dj,k,l sin

jωt

k
), (10)

φ̈i,k,l(t) cos (φ2,k,l − φ1,k,l) ≈ e1,0,k,l

2
+

m∑

j=1

(ei,j,k,l cos
jωt

k
+ fi,j,k,l sin

jωt

k
), (11)

φ̇2
i,k,l(t) sin (φ2,k,l − φ1,kl) ≈ g1,0,k,l

2
+

m∑

j=1

(gi,j,k,l cos
jωt

k
+ hi,j,l,k sin

jωt

k
), (12)

sign(φ̇i,k,l(t)) ≈ p1,0,k,l

2
+

m∑

j=1

(pi,j,k,l cos
jωt

k
+ qi,j,k,l sin

jωt

k
), (13)

sin φi,kl ≈ r1,0,k,l

2
+

m∑

j=1

(ri,j,k,l cos
jωt

k
+ si,j,k,l sin

jωt

k
), (14)
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sin φi,k,l cos t ≈ u1,0,k,l

2
+

m∑

j=1

(ui,j,k,l cos
jωt

k
+ vi,j,k,l sin

jωt

k
), (15)

sin φi,k,l sin t ≈ w1,0,kl

2
+

m∑

j=1

(wi,j,k,l cos
jωt

k
+ zi,j,k,l sin

jωt

k
), (16)

where k=1, 2, ..., K, and i=1, 2, is the corresponding period of the orbit; K is the maximum

periodicity. Meanwhile, for the non-dimensional differential equations, time t here is actually

τ in equation (4), and fundamental frequency is 1. If incremental encoders are used to

sense the angular displacements, then velocity and acceleration are not directly measured.

But, their Fourier transformations can be handily generated by the displacement’s Fourier

transformation. However, for noise contaminated displacement signals, noisy errors may be

amplified in the obtained Fourier spectrum of velocity and acceleration. Also, Fourier series

expansions of some terms in the differential equations, such as φ̇2
i,k sin (φ2,k − φ1,k) , are not

obtained by direct Fourier series expansion of their time domain signal, but by convolution of

known Fourier expansion components with a low pass filter applied. The purpose of applying

a low pass filter to each signal component before convolution is to avoid noise amplification.

Substituting (5–16) into (4), and equating the coefficients of terms with identical harmonic

order, we obtain two matrix equations:




e2,0,1,1 − g2,0,1,1 r1,0,1,1 u1,0,1,1 w1,0,1,1 p1,0,1,1 Ω1,1,1 − Ω2,1,1

e2,1,1,1 − g2,1,1,1 r1,1,1,1 u1,1,1,1 w1,1,1,1 p1,1,1,1 d1,1,1 − b1,1,1

f2,1,1,1 − h2,1,1,1 s1,1,1,1 v1,1,1,1 z1,1,1,1 q1,1,1,1 −(c1,1,1 − a1,1,1)
...

...
...

...
...

...
e2,0,k,l − g2,0,k,l r1,0,k,l u1,0,k,l w1,0,k,l p1,0,k,l Ω1,k,l − Ω2,k,l

e2,1,k,l − g2,1,k,l r1,1,k,l u1,1,k,l w1,1,k,l p1,1,k,l d1,k,l − b1,k,l

f2,1,k,l − h2,1,k,l s1,1,k,l v1,1,k,l z1,1,k,l q1,1,k,l −(c1,k,l − a1,k,l)
...

...
...

...
...

...




·




B11

B12

B13

B14

C11

C12




=




0
a1,1,1

b1,1,1
...
0

a1,k,l

k2

b1,k,l

k2

...




,

(17)

or

A1~x1 = ~q1 (18)
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and



e1,0,1,1 − g1,0,1,1 r2,0,1,1 u2,0,1,1 w2,0,1,1 −Ω1,1,1 + Ω2,1,1

e1,1,1,1 − g1,1,1,1 r2,1,1,1 u2,1,1,1 w2,1,1,1 d1,1,1 − b1,1,1

f1,1,1,1 − h1,1,1,1 s2,1,1,1 v2,1,1,1 z2,1,1,1 −(c1,1,1 − a1,1,1)
...

...
...

...
...

e1,0,k,l − g1,0,k,l r2,0,k,l u2,0,k,l w2,0,k,l Ω1,k,l − Ω2,k,l

e1,1,k,l − g1,1,k,l r2,1,k,l u2,1,k,l w2,1,k,l d1,k,l − b1,k,l

f1,1,k,l − h1,1,k,l s2,1,k,l v2,1,k,l z2,1,k,l −(c1,k,l − a1,k,l)
...

...
...

...
...




·




B11

B12

B13

B14

C2




=




0
c1,1,1

d1,1,1
...
0

c1,k,l

k2

d1,k,l

k2

...




,

(19)

or

A2~x2 = ~q2, (20)

where ~x1 and ~x2 are vectors of unknown parameters. Given a set of periodic orbits, it is

adequate to equate the coefficients of the first several orders of sub-harmonics since they are

usually the major components of the periodic orbits and less contaminated by noise. We then

truncate the Fourier series expansion, and take the first M orders, such that M · K > Nc,

where Nc is the number of unknown coefficients in ~x1 or ~x2. With these conditions satisfied,

the two equations can be solved by least mean square method:

~̂x1 = (AT
1 A1)

−1AT
1 ~q1 (21)

and
~̂x2 = (AT

2 A2)
−1AT

2 ~q2. (22)

After the non-dimensional parameters are identified, the physical properties can then be

restored according to non-dimensional parameters’ definition if part of the physical parame-

ters can be known prior to identification. In the experiment, m2, e2, l1 were treated as known

since these physical properties were easily evaluated. Also, by defining Bi5 =
√

B2
i3 + B2

i4,

i=1, 2, we can obtain

pb = |Bi2/Bi5| = g

(2πfe)2a
. (23)

Hence pb is a constant for a constant excitation amplitude a and can be used as an indicator

of the correctness and accuracy of the identified results.

4 Experiment Description

Figure 1 shows sketch of the double-pendulum that was used in the experiment. Two opti-

cal encoders (US digitals) were separately attached to the central arm (first arm) and the
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second arm to measure the relative angular displacements θ1 and θ2. Both of the encoders

have a resolution of 1024, which is capable of detecting a minimum angular difference of

0.3516o. The two encoders sent out TTL square waves, which are noise-resistant. The TTL

signals were then sent to two EDAC (Encoder Digital to Analog Converter) converters, which

transformed the TTL waves into analogue signal. After that, a data acquisition terminal

translated all the signals into computer-acceptable digital signals.

Table 1: Physical properties of the double pendulum.

m1 (kg) 0.1362 m2 (kg) 0.040
e1 (m) 0.0127 e2 (m) 0.0267
l1 (m) 0.0635 l2 (m) 0.0534

J1 (kg×m2)* 5.99× 10−4 J2 (kg×m2)* 4.033× 10−5

C11 * 1.01× 10−3 C1 * 0.0485
C2 * 0.00366 – –

For validation purpose, Table 1 lists all the physical properties of the double pendulum.

The ‘*’ marks in the table denote that some properties are not directly measured, but

estimated from other dynamic methods, which implies that those parameters could have

small errors. To estimate the mass moment of inertia, a small amplitude free vibration was

tested on the double pendulum. By evaluating the two natural frequencies of the system

through the FFT, the mass moment of inertia values were calculated. Some parameters

related to sampling and experimental setting are listed in Table 2.

Table 2: Experimental settings.

Sampling rate (fs) 500 Hz Excitation freq. (fe) 5 Hz
Cut-off freq. (fc) 80 KHz Excitation amplitude (a) 1.15 cm

With all these settings, the acquired chaotic data was obtained during a 3-hour-long

chaotic vibration. The data section lasted 22 minutes.
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5 Result and Validation

5.1 Phase plane reconstruction & UPO extraction

For simplicity, the number of embedding dimensions was chosen to be four, e. g. θ1(t),

θ1(t + dt), θ2(t), and θ2(t + dt). This simplification has been proved to be successful for

identification. So then, the remaining question of the phase plane reconstruction was deciding

time delay Td. Mutual information [11] of the signal can be used for choosing adequate time

delay.

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

dt

I(
dt

)

Mutual Information

Figure 2: Mutual information I(dt).

It can be seen from Figure 2 that there are weak minima of I(dt)at dt =5, 15, 18 and 24.

But, Td=24 in a driving period of 100 samples is somewhat close to a quarter period, the

ideal delay for a sinusoidal signal. The reconstructed phase portrait is plotted in Figure 3

with Td = 24. The portrait shows that the central arm represented by θ1 oscillated in small

angles most of the time with occasional large angle whirling, which implies relatively larger

noise in θ1 signal due to the limitation of the optical encoders. Whereas, the second arm

displacement, represented by θ2, consisted mainly of whirling vibration.

After choosing embedding dimensions and time delay, we used the reconstructed phase

plane to extract unstable periodic orbits (UPO). Since there are two angles involved, each

with different characteristics, the error tolerance of extraction e was to be 5%. Suppose the
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Figure 3: Phase portrait of experimental data with dt=24, a θ1(t)–θ1(t + dt), b θ1(t)–θ2(t),
c θ2(t)–θ2(t + dt); θ is represented by theta in the figure.

sampled signal is si(t) = [θi(t) θi(t + Td)] for i=1, 2, an approximated UPO with error

tolerance e is extracted if

‖si(t)− si(t + kT )‖ < ei, i = 1, 2, (24)

where T is the excitation period and k is periodicity of the recurrence. For the given

experimental settings, fs=500Hz, fe=5Hz, T=fs/fe=100. Then, for example, for a given

k = 4, if inequality (24) is satisfied, a period 4 orbit is then said to be extracted. One

data set of 670,000 points was used in analysis. For a 5% tolerance, 6 distinct orbits were

extracted.

Figures 4–9 show the extracted UPOs. In all of the cases, the small arm whirled. In

Figure 5 and 7, the central arm whirled, whereas, in other figures, the central arm oscillated
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Figure 4: A period 4 UPO; theta1 and theta2 in the plot represent θ1 and θ2; dt=24; same
for the following figures.
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Figure 5: A period 9 UPO.
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Figure 6: A period 12 UPO.
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without whirling. Compared to [16, 17], the extracted UPOs in this double pendulum

system are much fewer than the extracted UPOs in the single d. o. f. systems, which even

had tolerance error smaller than 5%. This is probably because recurrences are less frequent

in higher dimensional spaces for small periodicity k.

5.2 Identified parameters

Table 3 lists all of the identified parameters by Fourier series expansion of UPOs, applying

Low-pass filter, FFT convolution, and harmonic balance method.

Table 3: Identified parameters by applying low-pass filter, FFT convolution, Fourier series
expansion of UPOs, harmonic balance method with sub-harmonics whose frequencies are ≤
excitation frequency fe=5 Hz, and sub-harmonics optimization.

– Identified values True values Error×100%
B11 0.1167 0.1131 3.2%
B12 0.0781 0.0711 9.8%
B13 0.0809 – –
B14 0.0264 – –

B15 =
√

B2
13 + B2

14 0.0849 0.0820 3.6%

B21 1.6149 1.6816 4.0%
B22 0.2562 0.2630 3.6%
B23 0.2777 – –
B24 0.0715 – –

B25 =
√

B2
23 + B2

24 0.2868 0.2913 1.6%

C11 * 0.0001 1.02×10−3 –
C12 * 0.0007 0.00366 –
C2 * 0.0106 0.0485 –

Jo1 (kg·m2)* 5.8113× 10−4 5.99× 10−4 2.0%
Jo2 (kg·m2)* 4.1995× 10−5 4.033× 10−5 3.9%

a (cm) 1.18 1.15 2.6%
m1e1 (kg·m) 1.73×10−3 1.60×10−3 8.5%

The sub-harmonic terms whose frequencies are smaller than (or equal to) the excitation

frequency were selected and optimized for identification purpose, because the noise is actually

reduced in this frequency interval. The optimization process utilizes linear regression tech-

niques and will be introduced later. The friction coefficients correspond to negative friction,

or to energy generation, which is not physically realistic and therefore deemed inaccurate.
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Part of the reason for this inaccuracy is due to the fact that both of the Coulomb friction and

viscous damping factors are much smaller than other factors in the same matrix equations.

However, despite the friction factors inaccuracy, most of other parameters match with the

actual values within an error range of 10%, which is generally satisfying for experimental

data.

Meanwhile, as we have mentioned before, some of the ‘true’ values (marked with ‘*’) listed

in Table 3 were obtained by indirect dynamical method, e. g. small angle free vibration, and

thus those ‘true’ physical parameters and related non-dimensional parameters may also have

some error. Thus, more verification methods were examined (see Section 5.6).

5.3 Friction issue

Our first result has showed that friction coefficients may not be precisely identified due to

their small values. Previous researches [16, 17] also indicate that friction parameters were

more difficult to identify accurately than other parameters in experiments for a single degree

of freedom system. The inaccuracy can result from mainly three reasons:

1. experimental noise in sampled data;

2. inadequate sensor sensitivity (the resulted error can also be treated as a noise compo-

nent);

3. inaccurate model of friction, e. g. viscous friction, dry friction, or their combination.

In the present experiment, the first two reasons affected the identification procedure. Fur-

thermore, inadequate sensor sensitivity can actually be considered as one of the noise sources

during data acquisition process. The noise decreases the accuracy of the extracted UPOs.

As a result, the identified friction coefficients are erroneous, whereas other estimated param-

eters show only small discrepancies from the real values. What if the friction coefficients

can be determined prior to identification, and therefore, the identification could be improved

with the pre-knowledge of friction terms. Here, one would like to know the roles of friction

parameters in the identification process, and whether the friction errors have influence on

other identified parameters in the two-degree of freedom double pendulum system, which is

slightly damped.

We can assume that friction parameters are already known, and we want to identify the

other parameters in our harmonic balance method. In this work, we determined the friction

in each pendulum bearing by a small amplitude free vibration method. The free vibration
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test indicated that in the central arm, solely Coulumb friction was involved, and in the

second arm, solely viscous friction was involved. The non-dimensional form of the friction

parameters are listed in Table 1. Hence, we applied the identification algorithm with known

friction coefficients.

Table 4: Identified non-dimensional parameters provided that the friction coefficients are
known.

– Identified values True values Error×100%
B11 0.1178 0.1131 4.2%
B12 0.0774 0.0711 8.8%
B13 0.0829 – –
B14 0.0185 – –

B15 =
√

B2
13 + B2

14 0.0852 0.0820 3.9%

B21 1.6040 1.6816 4.6%
B22 0.2646 0.2630 0.6%
B23 0.2840 – –
B24 0.0483 – –

B25 =
√

B2
23 + B2

24 0.2880 0.2913 1.2%

The result in Table 4 shows that the friction parameters, due to their much smaller values

compared to other parameters (less than 1/5 of other parameters), have little influence on

the overall result. This also implies that the small errors in other parameters can cause a

large percent error in the friction terms. Hence, the first result in Table 3 is believed to be

reliable for the coefficients of conservative and parametric excitation terms.

For further verification, a simulation of the double pendulum system based on equa-

tion (2) and the identified parameters was examined. However, unlike the robustness of the

identification process, simulated double pendulum system is extremely sensitive to param-

eters’ setting, e. g. friction parameters. The simulation was done under Matlab platform

by digital integration. The simulation result was obtained (shown in Figure 10) under

C11 = 1.02×10−3, C11 = 0.00366 and C2 = 0.0485 and other parameters set as the identified

values in Table 3.

5.4 High frequency noise in unstable periodic orbits

In the previous application of the chaotic system identification process [16, 17, 18] in which

single d. o. f. systems were examined, the identification algorithm was noise resistant. How-
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Figure 10: Phase portrait of the simulated system with C11 = 1.02× 10−3, C11=0.0366 and
C2 = 0.0485; dt=24.
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ever, similar hypothesis could not be applied to the present two d. o. f. system. The reason

is simply due to the strong non-linearity of the double pendulum, and it can be explained

by the difference in the governing differential equations:

θ̈ + c/rθ̇ + 1/r2 sin θ − f sin t cos θ = 0. (25)

Equation (25) is the governing equation of a horizontally excited single pendulum, which

was examined in [18]. Although the parametric excitation term is nonlinear, θ̇ and θ̈ terms

are, on the other hand, linear. The sin θ term in (25) can also be regarded as linear in terms

of harmonic functions. Suppose the contaminated signal is composed of the real signal and

noise n(t): θ(t) = θt(t) + n(t). The angular speed and acceleration of periodic orbits can

be obtained by equations similar to (7)–(10). Hence, the noise in the obtained speed and

acceleration kth sub-harmonic is actually amplified by k, though n(t) is rather small in the

displacement signal. The overall signals of speed and acceleration are then considered to

be contaminated mainly by high frequency noise. Apparently, to the system (25), where

speed and acceleration terms are all linear, since in the identification matrix, only the first

K terms of harmonic order are used, the high frequency noise whose frequency larger than

K + 1th harmonic term will be automatically filtered out, which explains why the identifi-

cation process is noise resistant for systems like (25). Nevertheless, in the double pendulum

system (4), the identification process appears to be less noise resistant than the previous

examples since velocities and accelerations do not appear linearly in differential equations.

Specifically, it is the (dφi

dτ
)2 sin (φ2 − φ1) and φi

′′ cos (φ2 − φ1) terms that contribute most to

the noise inaccuracy of the result. Other high order terms also have similar problem of noise

amplification. It can be explained by the following FFT equation

F [φ̇2
i sin (φ2 − φ1)] = F(φ̇i)

2 ⊗F [sin (φ2 − φ1)], (26)

where F(x) represents the Fourier transform of x, and operator ⊗ represents convolution.

The high frequency noise in each component is, therefore, mixed into the final result by

convolution since convolution involves the integration of two signals. Furthermore, it actually

amplifies the noisy influence of the angular displacement, e. g. high frequency noise, since

in the algorithm, the frequency components of θ̇i and θ̈i are obtained by equation (7)–(10).

Hence, the truncation of the first K harmonic terms could not reduce the disturbance of the

noise.

One way to avoid noise contamination is to filter out the high frequency noise of the

signal after UPO extraction and before convolution. By doing so, the noise component can
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be effectively controlled. The algorithm was incorporated in the identification process, and it

turned out to be effective. Suppose y = (dφi

dτ
)2 sin (φ2 − φ1), Table 5 compares the difference

of the first 4 orders of Fourier series coefficients of y with low pass filtering before convolution

and without filtering (shown in Figure 5). The cut-off frequency was set to be 1/5fs Hz.

Figure 11 shows the velocity and acceleration frequency spectra of θ1. It can be seen that

the acceleration’s high frequency noise is quite intolerable, and even with the low pass filter

of 1/5fs cut-off frequency, there is still considerable noise remaining.

Table 5: Comparison of F(y) with and without filter added.

i Coefficients of cos (ix) Coefficients of sin (ix)
without filter with filter without filter with filter

1 -3.2486 -0.3087 0.0328 0.0000
2 -34.0713 -27.1330 17.7370 17.7403
3 -15.6946 -8.6732 -23.6908 -23.2652
4 -31.2079 -24.1696 -10.2571 -10.6034
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Figure 11: FFT amplitude of the θ̇1 and θ̈1 with and without low pass filter applied; the
continuous line is FFT of signals with filter of 1/5fs cut-off frequency; the dotted line is FFT
of signals without filter; k is the order of sub-harmonics.

Displayed in Figure 12 are also signals with and without the low pass filter for the

period-9 UPO. The low pass filtered signals are more smooth and assumed to be closer

to real signals. Meanwhile, an identification process without any filtering was examined
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by utilizing the same periodic orbits displayed in Figures 4–9. Listed in Table 6 are the

identified parameters. B21 displays a larger error because of the strong non-linearity of the

related term and the relatively larger noise contamination level (due to θ1’s small oscillation

amplitude and sensitivity of optical encoders).

Table 6: Optimized identification with no digital filter applied.

Parameters Identified values True values Error×100%
B11 0.1125 0.1131 0.5%
B12 0.0790 0.0711 11.1%
B15 0.0825 0.0820 0.6%
B21 1.1611 1.6816 31.0%
B22 0.2553 0.2630 3.0%
B25 0.2564 0.2913 12.0%
C11 0.0003 1.02× 10−3 –
C12 -0.0002 0.00366 –
C2 0.0164 0.0485 –

5.5 Digital differentiation and error reduction

5.5.1 Recurrence tolerance

Due to the limited length of the experimental data, not many periodic orbits were extracted

by setting the extraction error tolerance small, e. g. less than 5% in the present experiment.

Thus, one would naturally tend to increase the error tolerance such that more periodic

orbits can be extracted. However, with the increased error tolerance and hence more, but

less accurate, periodic orbits, the identification results turned out to get worse for the double

pendulum system. Table 7 lists the identified parameters (Fourier series method) with 8%

error tolerance of extraction (in this case, 58 different orbits extracted), and showed large

errors. For the present system, the coefficients B11 and B21 are parameters of strong nonlinear

terms, and therefore, identification of these two parameters are usually less stable and more

prone to get error.

The discrepancy comes mainly from large recurrence error, which resulted from the large

error tolerance of UPO extraction. Figure 13 a and b display the calculated angular velocity

and acceleration curves of a period-9 (Figure 5) orbit by means of Fourier series expansion

method. It is showed that an impulse caused by recurrence error occurred in the periodic
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Table 7: Comparison of calculated values by Fourier Series (FS) method and Digital Differ-
entiation (DD) method when error tolerance is set as 8%.

Parameters FS ID FS Error×100% DD ID DD Error×100%
B11 0.0126 88.5% 0.1224 8.2%
B12 0.0730 2.7% 0.0760 6.9%
B15 0.0908 10.7% 0.0908 10.7%
B21 1.4703 12.6% 1.6103 4.3%
B22 0.2607 0.9% 0.2559 3.7%
B25 0.2851 2.1% 0.2772 4.8%
C11 0.0014 – -0.0003 –
C12 0.0005 – 0.0016 –
C2 0.0053 – 0.0093 –

speed and acceleration curve, which is not true for the real periodic orbits. If we look at the

velocity curve, it can be express as

˙̂
θ(t) = θ̇(t) + αδ(t− tc) + η(t), (27)

where
˙̂
θ(t) is the calculated speed curve, θ̇(t) is the real velocity curve, αδ(t − tc) is the

impulse with amplitude α proportional to the recurrence error, tc is time delay, and η(t)

is noise other than the recurrence one, which is considered to be small. Thus, after digital

filtering, and applying Fourier transform, we obtain

F(θ̇) ∼= F(
˙̂
θ) + αe−jtcω

, where α is the expression of the impulse function in frequency domain and is a white noise.

Furthermore, this noise contaminates all the sub-harmonics of the velocity curve, which could

not be eliminated by the low pass digital filter and could hence generate large error in the

identification result.

5.5.2 Digital differentiation

Through the previous analysis, for large recurrence error, one would naturally consider that

a similar scenario would happen to other dynamic systems with strong non-linearity. In this

case, digital differentiation could be applied given adequate sampling points per cycle, e. g.

a high sampling rate fs. In this experiment, there were 100 points per excitation period.
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Figure 13: Obtained θ̇1 and θ̈1 orbits by Fourier Series method (a and b) by digital differ-
entiation method (c and d); the recurrence impulses occur at k=800 in (a and b.)

Hence, a five points differentiation algorithm was applied to obtain the derivatives and double

derivatives of angular displacements:

ḟ(x) =
8[f(x + h)− f(x− h)]− f(x + 2h) + f(x− 2h)

12h
+ o(h4) (28)

and

f̈(x) =
16[f(x + h) + f(x− h)− 2f(x)]− f(x + 2h)− f(x− 2h) + 2f(x)

12h2
+ o(h4). (29)

The errors of these algorithms can be reduced with a smaller time interval h. The five points

algorithm can also reduce the influence of high frequency noise. The obtained curves are

in Figure 13 c and d for the extracted period-9 orbit. It is apparent that the recurrence
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impulses are eliminated for both of the cases, and much less high frequency noise displayed

in the speed and acceleration curves. The corresponding identified parameters are listed in

Table 7, which is more precise compared to the result of Fourier series method.

However, the algorithm of digital differentiation itself introduces calculation errors in

equation (28) and (29). It could not predict precisely the small value parameters, e. g. fric-

tion parameters, according to a identification test based on the simulated double pendulum

system. On the other hand, for the same simulated system, the Fourier series method can

identify all of the parameters with satisfying accuracy if error tolerance of extraction is small

enough (2% in this case). It shows that the digital differentiation method is more stable,

but not more accurate compared to the Fourier series expansion algorithm.

5.5.3 Choice of sub-harmonics or harmonics

It was found that the identification result varied when a different choice of sub-harmonics

was applied. The problem was not so troublesome in previous applications of the harmonic

balance method [16, 17, 18] where nonlinearty is simple and not so strong as the double

pendulum case. However, to the present experiment, different sub-harmonics set lead to

quite different estimated parameters. It is then necessary for us to seek some general rules

for judging whether the result.

In equation (18) and (20), the first M sub-harmonics of each UPO (sub-harmonics are

functions of sin
(

ix
k

)
or cos

(
ix
k

)
where i and k represents the ith term in Fourier series of a

period k orbit. The choice of M remains an issue. For a periodic orbit whose period is a

multiple k of the excitation period, if M ≤ k, i. e. sub-harmonics frequencies less than or

equal to the driving frequency, the result was tested to be the best for the examined pendulum

system. One reason is that these sub-harmonics consist of a large part of the displacement

signals energy, and hence, contain relatively small portion of the noise contamination (see

Figure 11). Also, the noise components in velocity and acceleration signals are reduced

according to equations (7)–(10).

The remaining question is whether it is possible to measure the identification error and

use it as an indicator of how ‘true’ the identification is. To quantify the identification error,

we refer to linear regression techniques, borrow some concepts in statistics, and transform

(18)–(22) into

~ei = Ai
~̂xi − ~qi, i = 1, 2, (30)
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Figure 14: Identification residue of ~e2 with each dot representing a subharmonic; the hori-
zontal position of each dot is the predicted value of ~q2, the vertical position of each point is
the identification residue.

where ~ei is the residue vector. Then, we can define the identification error εi as

εi =
max(‖~ei‖∞)

max(‖~̂qi‖∞)
,

where ~̂qi = Ai
~̂xi is the predicted vector of ~qi. With the identification error defined, the

rule of thumb for judging a good identification is εi < εc, where εc is the positive critical

value. εc = 10% was used in the experiment. Figure 14 displays the residue ~e2 and the

corresponding identification error ε2 is 18.4% when all 140 sub-harmonics were included

in the identification, whose frequencies were less than or equal to the driving frequency.

Apparently, the results for B2j for j=1, 2, 5, are not satisfying, and the comparison in Table

8 and Table 3 also corroborates the rule of thumb since B21 has a 11.2% error. On the other

hand, The B1j parameters have ε1 = 8.8%, and are quite consistent with the result after

optimization in Table 3.

Our problem is now how to optimize the identification process so as to improve the

accuracy, i. e. minimize the identification error. From the statistics point of view, we have

a good linear regression curve if the resulting residues are distributed evenly and randomly

around the predicted values. For this purpose, an optimization algorithm was developed to
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Table 8: Identified parameters with no optimization to sub-harmonics set.

Parameters Identified True values Error×100%
B11 0.1178 0.1131 4.2%
B12 0.0782 0.0711 10.0%
B15 0.0861 0.0820 5.0%
B21 1.4935 1.6816 11.2%
B22 0.2562 0.2630 0.5%
B25 0.2828 0.2913 3.4%
C11 0.0001 1.02× 10−3 –
C12 0.0007 0.00366 –
C2 0.0147 0.0485 –

exclude the sub-harmonics terms which result in large residues, and retain the good terms,

which consist of most of the sub-harmonics and should have small residues. It involves the

following steps:

1. Given the set of sub-harmonics, do the identification process and find out the maximum

absolute residue value emax.

2. For a level of significance β, which is a small value, remove from the sub-harmonics set

those sub-harmonics whose corresponding residue e > (1− β)emax.

3. Repeat the first step by using the remaining sub-harmonics, and compute the identi-

fication error εi.

4. If εi < 10%, then stop the optimization process and assume that the desired result

has been obtained; if not, go back to step 1 with the remaining sub-harmonics set and

repeat the optimization process.

For the investigated system, after 3 optimization processes with β = 5% (by excluding

10 erroneous sub-harmonics), the identification errors are reduced to ε1 = 8.1% and ε2 =

9.4%. The corresponding results are listed in Table 3. Displayed in Figure 15 is the residue

distribution of ~e2 after optimization. Compared to the identified values without optimization

in Table 8, the optimized ones have smaller errors and are more accurate. However, the

proposed optimization can not work well for all cases. If after a few times of optimization,

the identification errors are still undesirable, we should either use more precise UPOs, or re-

select the set of sub-harmonics before optimization such that the noise contamination can be
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minimized. In order to obtain more precise UPOs, besides the UPO extraction with smaller

tolerance of error, we can also refine the extracted UPOs [19]. But the refinement process

may generate erroneous results for quasi-periodic orbits and not adequate for limited data

set. For better selection of sub-harmonics, one may choose only those sub-harmonics that

have the largest amplitude in the UPOs’ acceleration FFT spectrum (also avoid those noise

contaminated high frequency sub-harmonics, since it could only be noise). Furthermore, the

selection could be simplified by choosing the harmonics instead of sub-harmonics if most of

the orbits are composed mainly of the harmonics of the driving frequency fe.
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Figure 15: Identification residue after optimization for ~e2 with each dot representing a sub-
harmonic.

5.6 Validation methods

Generally, most of the parameters of a nonlinear system are unknown to us. The direct

comparison discussed in previous sections is not available for most applications. Besides,

lots of the ‘true’ parameters in Table 1 were also estimated. Hence, we are not clear what

the exact errors are for the identified values. Two other methods were applied here to

verify the identified parameters and the effectiveness of the identification algorithm. The

first one is to verify our method by identifying the simulated double pendulum system such

that comparisons can be made based on identification results and the phase portraits of
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the experimental and simulated systems. The second method involves the linearized system

properties, e. g. natural frequencies.

5.6.1 Identification of the simulated double pendulum system

To verify the effectiveness of identification process, a simulated system was also examined

with parameters setting as the identified values listed in Table 3 except for the friction terms

(see Section 5.3). The error tolerance of extracting unstable periodic orbits is 5%. The phase

portrait has been shown in Figure 10. Some similarity observed in the simulated system

compared to the experimental phase portrait (displayed in Figure 3), e. g. chaotic behavior.

Many detailed chaotic charasteristics were not available due to the inadequate experiment

data. However, it turned out that more and different UPOs could be extracted from the

equally large, sampled data of the simulated system , than from the experimental data set.

Meanwhile, for the simulated system, the comparison in Table 9 between the identified values

Table 9: Comparison of the identified values and the true parametric settings of the simulated
system.

– Identified Parameters setting Error×100%
Jo1 (kg.m2 5.767× 10−4 5.757× 10−4 0.2%
Jo2 (kg.m2 4.310× 10−5 4.228× 10−5 1.0%

B11 0.1166 0.1167 0.1%
B12 0.0787 0.0781 0.8%
B15 0.0848 0.0849 0.1%
C11 0.0005 0.0 –
C12 0.0038 0.00366 3.8%
B21 1.5943 1.6149 1.3%
B22 0.2568 0.2562 0.2%
B25 0.2866 0.2868 0.1%
C2 0.0429 0.0485 11.5%

and the parameter settings shows that all the parameters including the friction coefficients

are identified correctly, which confirms the effectiveness of this algorithm. The friction

coefficients, probably due to their much smaller values and the weakness of the least mean

square method, are still hard to calculate very accurately, and thus, identified with larger

error percentages. With little noise in the simulated data, the error can only come from the

recurrence error of the extracted periodic orbits. Also, it confirms the difficulty of identify
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small friction parameters in the experiment, since more noise contamination occurred in the

experimental data.

5.6.2 Linear properties

The linearized pendulum can also be applied to validate the identification results, e. g.

comparing the natural frequencies of the linearized system. Suppose the pendulum has only

small angle oscillation without excitation force, by discarding the higher order terms and

neglecting dry friction, equation (4) can be simplified to

{
d2φ1

dτ2 + B11
d2φ2

dτ2 + B12φ1 − C12(φ̇2 − φ̇1) = 0
d2φ2

dτ2 + B21
d2φ1

dτ2 + B22φ1 − C2(φ̇2 − φ̇1) = 0
. (31)

Since our goal is to examine the natural frequencies, by neglecting the damping terms,

equation (31) can be further simplified to the form of





d2φ1

dτ2 = −B12

1−B11B21
φ1 + B22B11

1−B11B21
φ2

d2φ2

dτ2 = B12B21

1−B11B21
φ1 + −B22

1−B11B21
φ2

, (32)

and the characteristic matrix of equation (32) is

A =




0 1 0 0
−B12

1−B11B21
0 B22B11

1−B11B21
0

0 0 0 1
B12B21

1−B11B21
0 −B22

1−B11B21
0




. (33)

The eigenvalues of matrix A are the natural frequencies of the linearized system in non-

dimensional form. The natural frequencies of the identified system were solved to be 1.336Hz

and 2.904Hz. Through FFT analysis, the natural frequencies obtained by experimental data

are 1.25Hz and 3.00Hz. Comparison in Table 10 shows that the natural frequencies match

with the FFT result. It shows that the identified parameters excluding the friction terms

are reliable for the purpose of system linearization.

Table 10: Natural frequencies.

– Identified Experimental Error × 100%
fn1 1.336 1.25 6.9%
fn2 2.904 3.00 3.2%
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6 Conclusions

A double pendulum system experiment was examined for chaotic system identification. The

investigated system was a multi-degree of freedom system with strong non-linearity, e. g.

mixed φi, φ̇i and φ̈i non-linearity. However, only displacement signals were directly measured

data. To adapt to these new challenges, some modifications were added in the harmonic

balance identification algorithm:

1. The identification appeared to be less noise-resistant in this case, mainly due to the

strong nonlinear term of (dφi

dτ
)2 sin (φ2 − φ1) and φi

′′ cos (φ2 − φ1). The high frequency

noise contaminated the strong nonlinear terms without adequate low pass filtering of

each component before convolution.

2. Digital differentiation algorithm was developed and applied to the experiment data in

order to make the identification results more robust even with large recurrence errors

in the extracted orbits. It could be of use for limited data set. However, the digital

differentiation algorithm also introduced differentiation error, and thus, did not give

accurate values of friction terms.

3. Choices of sub-harmonics terms also had influence on the identified parameters. Inap-

propriate selection of sub-harmonics can generated poor results. To avoid poor results,

the key factor was to avoid noise contaminated sub-harmonics. For the present system,

the subharmonics with frequency less than excitation frequency were selected to avoid

noise.

4. Linear regression techniques were applied to quantify the identification error εi, which

reflected the error of the identified parameters by examining the residues and the

predicted values. Based upon the identification error, an optimization algorithm was

proposed to improve the result. An identification error less than 10% indicated an

rather satisfying result. However, optimization is limited by its statistical property,

and can not work for all data to satisfy the rule of thumb.

Friction was a problem in the identification process. For slightly damped systems, since

the friction factors were much smaller than other parameters, the identification could not

produce accurate values of the friction terms. Noise and recurrence error were the two factors

that contributed to this error. However, the harmonic balance algorithm is robust, and the
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validation process showed that the friction error had little effect on other identified parame-

ters. Through the experiment, it can be concluded that the examined identification method

can be applied to systems of chaotic, strong non-linearity and multi-degree of freedom. With

adequate modification, the identification result could be improved, and the quality of the

result can be quantified by the identification error.
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