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ABSTRACT

The complex orthogonal decomposition (COD), a process of
extracting complex modes from complex ensemble data, is sum-
marized, as is the use of complex modal coordinates. A brief
assessment is made on how small levels of noise affect the de-
composition. The decomposition is applied to the posturing of
Caenorhabditis elegans, an intensively studied nematode. The
decomposition indicates that the worm has a multi-modal postur-
ing behavior, involving a dominant forward locomotion mode, a
secondary, steering mode, and likely a mode for reverse motion.
The locomotion mode is closer to a pure traveling waveform than
the steering mode. The characteristic wavelength of the primary
mode is estimated in the complex plane. The frequency is ob-
tained from the complex modal coordinate’s complex whirl rate
of the complex modal coordinate, and from its fast Fourier trans-
form. Short-time decompositions indicate the variation of the
wavelength and frequency through the time record.

1 Introduction

In this work, we demonstrate the application of a method of
decomposing complex modes, the complex orthogonal decom-
position (COD) [1], to oscillatory bio-locomotion. In particular,
the method is applied to sensed ensembles of the wave-like pos-
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turing movements of a nematode worm as it crawls. Nematodes
are roundworms, nonsegmented worms with digestive, circula-
tory, and neuromuscular systems. Our focus is on Caenorhab-
ditis elegans, a tiny (about 1 mm in length) nematode which
lives freely in the soil. These worms crawl by generating a
neuromuscular-mechanical wave, which, given their small size
and low-frequency oscillation (typically a fraction of a Hz), has
negligible inertial effects.

In 1998, C. elegans became the first animal whose entire
genome was sequenced (The C. elegans Genome Sequencing
Consortium, 1998). The genome consists of about 100 mil-
lion DNA base pairs, and includes about 20,000 genes. As
such, C. elegans is a very important model for animal biology
and genetics in general. Studies of nematodes can have im-
portant implications for all animals, including humans. Since
it has a short generation time (three days) and a short life
span (two to three weeks), C. elegans is a valuable subject
for studying development, neurobiology, and aging [2] (also
http://www.wormbook.org).

Nematode locomotion has been useful as an assay for identi-
fying genes and pathways underlying synaptic transmission and
its regulation [3—7], and more recently to understand how loco-
motion is regulated, for example, by mechanosensors [8] and epi-
dermal growth factor [9]. There has been much recent effort to
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understand and model the structural neuro-muscular mechanics
[10-14], and to understand the gaits [15-17]. Also, and per-
haps most importantly, analysis of locomotion data is crucial for
modeling the biomechanics and neural circuits controlling this
process [10, 11]. Automated systems now allow the posture of
these worms to be extracted from video images [18], enabling
further analysis of the movement [19]. COD provides an oppor-
tunity for further development of the nematode motion analysis
toolbox. As such, in this work we apply the tool to decompose
the wave-like movements of worms. The benefits of this analysis
are to reveal different modes for different behavioral actions, and
to isolate the locomotion mode, and separate its temporal and
spatial variables, in calculating its wave parameters.

2 Complex Mode Decomposition
2.1 Background on the Decomposition Strategy

The method employed, COD, is a generalization of the well
known proper orthogonal decomposition (POD). POD, similar
to singular value decomposition (SVD), is a tool for extracting
modes that optimize the signal energy distribution in a set of
measured time series. It has been used to characterize spatial co-
herence in turbulence and structures [20-22], the dimension of
the dynamics [21-23], empirical modes for reduced order mod-
els [24,25], and in system identification [26,27]. POD, SVD,
and similar tools have been compared for structural applications
[28]. In specific circumstances, the POD produces the normal
modes of a structure [29-32].

POD is particularly useful if extracting standing wave com-
ponents, but is less suited for decomposing nonstanding wave
components. The COD fills this void, as complex modes can be
used to describe non-standing and traveling waves [33]. Com-
plex modal motions also occur in mechanical vibration systems
with gyroscopic terms, general damping [34, 35], and asymmet-
ric stiffness matrices (flutter and friction).

2.2 Complex Modes and Wave Motions

The harmonic motion in a complex mode z(¢) = e*u, where
z is a vector of particle positions, ¢ is time, &t = Y+ ®i, and u =
c¢+diis a complex mode, with y,®, ¢ and d being real scalars and
vectors, can be expressed in real form (for example by combining
with its complex conjugate, Z(r)) as

x(t) = e¥[cos(wt)c — sin(wr)d]. (1)

Thus a complex mode induces an oscillation with a continual
transition from the shape ¢ to the shape d. The relative sizes
and degree of independence of ¢ and d dictate the “amounts” of
standing wave and traveling wave components.

Conversely, e.g. in a continuum, a sinusoidal wave motion,
y(x,t) = sink(x — ct) = sinkxcos ¢ — coskxsin®¢, where ® =

ck, where k is the wave number, can be written as
y(x,t) = Re[e" sinkx + ie"™ coskx] = Re(z(x,1)),  (2)

where the complex wave motion z(x,t) = ¢'® [sinkx + icos kx]
perfectly matches the form of a continuous complex modal mo-
tion. When spatially discretized, the complex wave motion
would be z = ¢/ [c + id] where c is the spatially sampled sin kx
and d is the spatially sampled coskx. Then x = (z+Z)/2 pro-
duces a real signal with the above interpretation.

2.3 Complex Orthogonal Decomposition

To apply the decomposition method, real measured signals
y(¢) are first converted into complex analytic signals z(r) by tak-
ing at the Fourier transform ¥ (2y(t)) = 2¥ (®), and reassigning
the values of 2¥ (w), for ® < 0, to zero, to produce Z(®). The in-
verse Fourier transform produces z(t) = F ~! (Z(w)) [36]. Equiv-
alently, if y = Re(z), then the Im(z) is the Hilbert transform of y,
H(y) (e.g. [36]), and so z(t) = y(¢) +iH (y(z)). In practice, ei-
ther calculation would involve the fast Fourier transform (FFT).

With signals in complex form, z;(t), j = 1,...,M, where
M is the number of sensors distributed on a structure, we gen-
erate vectors z; = [z;(t1)---z;(ty)]”, by sampling at times 1
through #y. We build an M X N complex ensemble matrix
7= [Z] --~ZM]T.

We construct a complex correlation matrix R = %ZZT,
where the bar indicates complex conjugation. Since R is com-
plex and Hermitian (R = R”), it has real eigenvalues and com-
plex eigenvectors, and its normalized eigenvectors u; are unitary
(complex orthogonal) and satisfy

i/u; =0, i#]j 3)

The eigenvectors u; of R are the complex orthogonal modes
(COMs) and the eigenvalues A; are the complex orthogonal val-
ues (COVs). Thus, complex orthogonal decomposition refers to
the construction of R and its eigenvalue problem.

For interpretation, suppose we have a complex signal, z(x,?)
measured in meters, to be spatially discretized at xp,...,xp,
where x; = iAx, Ax = L/M, and L is the length of the medium.
Then z(x,t) = ):’]“-21 q;(t)0j(x), where ¢; are the normal modal
functions to be discretized and approximately extracted, and
q;(t) = fje'®" are the k contributing harmonic modal coordi-
nates. In the uniform case with orthogonal modal functions,

- =T A
fOL Oi(x)0j(x)dx=1=~ 9,‘ Qij, where approximate modal vec-
tors @J, are generated from spatial sampling of the orthogonal

complex modal functions, ¢;(x). Let us re-normalize the modal
vectors as 9}. = @j\/ Ax, such that QJTQJ = 1 (implying that the
9}. are dimensionless). Then the spatially discretized complex
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displacement vector can be written as z = ®q,,, where ® is an
M x M modal matrix, and gy, is the modal coordinate vector (im-
plying that the units of q,, are m). The signal is uniformly sam-
pled at times ¢ = t1,...,#y. As such, the ensemble has the form
Zy«n = 9Q,,, where Q,, is an M x N ensemble matrix of sam-
pled modal coordinates.

Applying this formulation to the analysis in [1], for orthog-
onal harmonic waves, if ®; # ®, and if ®; — 0 # 27n/Ar for
some integer n, then the discretized modal function is an ap-
proximate eigenvector of the complex correlation matrix R, such
that u; ~ 9]_, and the associated eigenvalue is A; ~ d;, where

dj= YN, q;(t)g;(t) is the mean squared magnitude of g;(¢).
If z is in meters, then the units of A; are m?. From equation

(3), the mean squared magnitude <@j|£) of an element k of the

normalized eigenvector is 1/M. Thus, for the kth particle on
the medium, the expected mean squared displacement ampli-
tude associated with the j-th mode is (|z;(t)|) = |qj(t)|2(|¢j|,%) =
d;j/M ~ Aj/M. The quality of these approximations depends on
the sample resolution, i.e. M and N.

Thus, in the example of orthogonal waveforms with har-
monic modulations, the complex orthogonal decomposition ex-
tracts the complex harmonic waveforms as the COMs and the
mean squared modulations as the COVs through the eigen-
value problem associated with the complex correlation matrix R.
These modulations of the complex modes define modal coordi-
nates.

Similar to Z = ©Q,,, we can define Z = UQ, where U is the
matrix of COMs, and Q is the ensemble of complex orthogonal
modal coordinates. If the modes in U are normalized, then by
complex orthogonality (3),

Q=U0"Z

This is a complex modal coordinate ensemble matrix, the rows
of which are the samples of each modal coordinate, ¢;(z), sam-
pled at t =1#1,...,#y. The normalized vectors making up U are
unitless, and so the units of Q are the same as those of Z.

COD is a generalization of POD, and will be able to ex-
tract both standing and traveling waves, as interpreted from
the extracted complex modes. For POD to recover information
about traveling and standing waves requires additional process-
ing of the proper orthogonal modal coordinates, and recognizing
whether two coordinates have the same frequencies and are 90
degrees out of phase. However, the COD will pair these com-
ponents together, automatically, as real and imaginary parts of a
single complex vector. POD can yield equivalent traveling wave
components only when the real and imaginary wave components
are orthogonal, and only a limited number of wave modes can be
captured.

2.4 Effects of Noise

Noise can be an issue in both biological and structural sys-
tems. Suppose the complex signal has low-level noise in addi-
tion to pure modal content, such that Z = ©Q,, + €E, where €
is “small”, and €E is the ensemble of added noise, which can in
turn be written via a modal expansion as E = ®Q,, with normal-
ized orthogonal matrix ®. Then the complex correlation matrix
can be written as

NR = ZZ" = (®Q,, +¢E)(QL®" +¢E")
= ®Q,, Q1 d" +£0Q,E” +eEQ.®” + ¢’EE

the latter term of which is very small and negligible. As such,
NR = ®Q,,QL®T 4 0(¢), and for a set of eigenvalues that are
well separated and not of order €, the associated eigenvectors
of R are perturbed by O(€) [37], such that the noise-polluted
eigenvectors are v; = ¢, 1 €e;.

Writing the COM as v; = ¢, + ee;, then z(r) = Vp(r) =
[¢ +eep,0, +ee, .0, + eey]p, where p(¢) and V are the
noise polluted complex- orthogonal modal coordinate vector and
modal matrix as obtained by COD. By orthogonality of the
COMs, p(t) = VTz(t), whence

pi(t) = 9, 2(t) + €&l 2(t) = qi(1) + €] 2(1), @)

using @TQ} = 0;; (discrete normalized case). The modal error

vector e; can be written in terms of linear normal modes by using
the expansion theorem [34]: e; = Zl}i 1T JQ/' Hence,

M
pilt) =qi(t)+e Y, riqj(r). )

j=Li#i

Thus the noise-contaminated complex orthogonal modal co-
ordinate p;(t) is polluted by other normal modal coordinates de-
pending on the deviation of the COM v; from the true 9.,
well as the relative strengths of linear normal modal components
q;(t). However, small-noise contaminated p;(r) and v; should be
representative of the “pure” ¢;(¢) and ¢,. If the “true” underlying
modes ¢ are not orthogonal, then an additional contribution of
q;(t) to pi(t) appears in equation (5).

2.5 Traveling and Standing Waves

A measure of nonsynchronicity, or “traveling index” for
mixed traveling waves, was defined [1] as the reciprocal of the
condition number between the real and imaginary parts, ¢ and d,
of the complex mode. If ¢ and d are nearly parallel, or if either
c or d is dominant, then the motion expressed by equation (1)
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will be nearly synchronous, and the reciprocal of the condition
number between ¢ and d will be small. Purely nonsynchronous
(including traveling) harmonic waves will have orthogonal real
and imaginary parts of the same magnitude, leading to a condi-
tion number of 1, and hence a traveling index of one. (A “trav-
eling index” of 1 indicates nonsynchronicity, which may not al-
ways represent traveling wave behavior.) As the traveling index
approaches zero, there is essentially one independent vector, rep-
resenting purely standing motion. Mixed wave modes can also
be dissected into standing (synchronous) and traveling (nonsyn-
chronous) parts [1].

3 Nematode Studies

Next we study the characteristics of nematode movements
using COD. Presented here are results for an individual wild-
type nematode (i.e., of the standard genetic background), with
an average length of L = 0.824 mm, corresponding to “wild type
worm 16” of the database linked off of reference [19].

3.1 Data Preparation

The worm crawled on a nematode growth medium (NGM),
which is an agar based gel. The NGM can affect worm behav-
ior [10]; the recipes used here are given in [38]. The NGM had
a thin lawn of Escherichia coli strain OP-50 that had been al-
lowed to grow over night at 37 C in a lysogeny broth [38] prior
to being spread on the NGM. One hour after the lawn was spread
on the NGM, the nematodes were recorded for up to two hours.
During this time, the lawn was thin enough that the nematodes
crawled on the NGM without much mechanical influence from
the lawn. The tracking was done in the morning at 20 C under
fluorescent lighting. The night before, the nematodes were se-
lected from a clearly distinguished larval-four stage, such that by
morning, all nematodes in the sample were young adults within a
12 hour difference in age. The conditions described here can be
repeated. However, variations across individual worms prompts
the need for statistics across a population, which is done with
metrics computed in a Matlab Analyzer program [18], but not
yet with the COD.

The worm was monitored using the Caltech Wormtracker
system [18, 19], in which the C. elegans were videotaped in an
optical tracking microscope. The videos were processed such
that (£(7),3(¢)) (planar) positions of M = 13 equally spaced vir-
tual markers on the worms are identified, sampled and recorded.
About four minutes of worm motion data were typically sam-
pled at Ar = 0.1666 seconds per sample (N = 1407 total time
samples). This process can be done for wild and mutant nema-
todes. Post processing of these data using the Analyzer program
produces motion parameters such as velocities, bending frequen-
cies, wavelengths, and track amplitudes (based on the size of the
bounding box on a crawling worm) [18]. These quantitative char-

acteristics can then be attached to the descriptions of various mu-
tant behaviors [19], and compared to similar quantities obtained
via the COD.

Let %(z) and §(r) be arrays of the (£(¢),9(¢)) coordinates
of the 13 virtual markers on the wiggling worm. In prepara-
tion for the COD, first the center of mass of each sample of
%(#;) and §(t;) data, for i = 1,...,1407, was translated to the
origin. For each sample configuration, the principal axes were
found by applying POD [29] to the 13 marker positions in the
X and § space. Then the worm was rotated so that its prin-
cipal axis lined up with the horizontal axis, while keeping a
record of each rotation angle 6(¢;). This produced, for each
time sample of each measured marker, a new (x,y) coordinate,
such that x specifies the axial position and y indicates the trans-
verse position of a marker. (See Figure 1. In the on-line paper,
Movie 1 (or http://www.egr.msu.edu/ feeny/FSCC12moviel.gif)
shows the animation of a short time segment of a crawling
worm based on the locations of the virtual markers. Movie 2
(http://www.egr.msu.edu/ feeny/FSCC12movie2.gif) shows the a
short time segment of transverse displacements of each virtual
marker. Time is sped up in Movies 1 and 2.)

3.2 Modal Decomposition of Posturing Movements

This COD analysis was based on only the y (transverse) data,
to ease visualization. This neglects axial contraction and exten-
sion which can also take place to some extent. As such, column i
of the ensemble Y was built from the y values of the 13 markers at
time #;, with marker one corresponding to the head. The complex
analytic ensemble Z was then created, and the COD was per-
formed. The COVs indicated that two or three complex modes
were significantly above the noise level (Figure 2). These mode
shapes and their modal coordinate dynamics were examined and
are discussed below.

3.2.1 Dominant Mode: Locomotion The first
mode, shown in Figure 3, represents motion that, with an oscil-
latory modulation, alternates between the solid and dashed lines
of the top figure, and their negatives, describing a traveling wave
to the right. The marker at the head is represented by the small
circle. The “traveling index” of this mode is 0.9387.

The dominant COV suggests a dominant average modal am-
plitude of about 0.16 mm. Considering that the first modal trans-
verse motion is z; (t) = ¢1(#)9,, the first modal motion of the K"
virtual marker has the form z; = ¢ (t)$14, and has an amplitude
|zik] = |q1(2)]|01x| = 0.16] 14| in mm. Except for the last two tail
markers, |¢1x| ~ 0.3 in Figure 3, and so |z1¢| ~ 0.05 mm. Peak-
to-peak transverse motion is therefore about 0.098 mm, which is
about 12% of the straightened worm’s length. The Analyzer pro-
gram produced a mean track amplitude of about 14.5% from the
aspect ratio of the instantaneous bounding box of the captured
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Figure 1. Above is the captured worm, arbitrarily located and oriented.
The head points down, and is indicated by a small dot. The coordinates
are translated to the origin and rotated, as shown below, where y indicates
the transverse deflection of the worm markers. The head (dot) points
right.

worm. The methods produce slightly different measures of os-
cillation amplitude, and the results can be considered consistent.

From the complex plot of mode one (Figure 3, bottom), we
can estimate the wavelength as the portion of the worm’s length
that completes one full circle in the plot. Here the wavelength is
about about A = 0.69 worm lengths per cycle. The wavelength
can also be expressed in mm/cycle if A is multiplied by the mean
length of the worm, such that A = LA = 0.569 mm/cyc. This
represents the wavelength measured along the deformed axis of
the worm. To obtain the wavelength measured in the crawling
medium, we consider the amount of foreshortening under trans-
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mode index

Figure 2. The COVs showing relative mean squared modal amplitudes.

verse deformation.

To quantify the foreshortening, suppose y(x), with x = 0 at
the head, represents the transverse displacement of a location
x along an worm at a fixed moment in time. We approximate
the worm as inextensible, under the assumption that the trans-
verse deformations are significantly larger than axial deforma-
tions. When y(x) = 0 everywhere, the worm is straight, and de-
fines an undeformed worm axis 7y, which we visualize as hor-
izontal. When y(x) is arbitrarily deformed, the worm is fore-
shortened in the ¥ direction, and the projection, from the head
to a point x on the worm, onto the % axis has length p(x). For
a deflected differential element dx of the worm, dy is the rise in
the element, dx is the hypotenuse, and dp is the run, such that
dp = +/(dx* —dy*) = \/(1 — (dy/dx)?)dx. Using a Taylor se-
ries for small slopes, dp/dx ~ 1 — (dy/dx)?*/2. Approximating
the worm posture as a sinusoid, such that y(x) = Asin(2mx/A +
), where Lisin mm/cyc, we can integrate to obtain the projected
length of a single wavelength as p(L) = A(1 —2(rA/A)?). Using
our estimated value of A = 0.05 mm we obtain p(i) = 0.85M.
Then p(A) = ip = P\, where P = 0.85, is the wavelength as
measured in the medium, while the original wavelength A was
measured with respect to the deformed spinal axis of the worm.

It is informative to examine the modal coordinates, as well.
The primary modal coordinate is persistently active; the mode
represents locomotion. This modal coordinate has a consistent
whirl in the complex plane. The real part of the modal coordi-
nate is oscillatory, with a frequency equal to the whirl rate of the
complex coordinate. The frequency can be estimated from the
mean complex whirl rate of the modal coordinate (f,, = 0.31 Hz,
with a standard deviation of 0.11) or the FFT (frrr = 0.32 Hz)
of the real part of the complex coordinate. The mean frequency
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Figure 3. Top: (dominant) mode one, with real (solid line) and imaginary
(dashed line) parts. (The vertical axes are magnified compared to Figure
1.) The head is at marker 1 (the circle) and points left. Bottom: mode one
in the complex plane, where the head is marked with the circle.

estimated by the Analyzer program (short time FFT of nematode
bending) is 0.31 Hz. The instantaneous whirl rate is computed
and shown in Figure 4, indicating that the worm has considerable
variation, with apparent cruising speeds, as well as short bursts
and lulls. The spectrum is also shown in Figure 4, with the vari-
ation in oscillation rate contributing to the broadened frequency
peak.

The wave speed is estimated as v,, = Af,, = 0.21 worm
lengths per second, or 0.173 mm/sec on average. The mean cen-
troid velocity from the Analyzer program is about 0.139 mm/sec,
about 80 % of the estimated wave speed. The value v,,, a “math-
ematical wave speed” that results from the calculation in the
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Figure 4. Top: dominant mode oscillation frequency, taken from the com-
plex whirl rate, over time. Bottom: spectrum of the dominant modal coor-
dinate, where dB is computed as 20 log g (¢), and where ¢ is in mm.

complex plane through A, can be interpreted as the speed of the
wave through the deformed spinal axis of the worm. Applying
the estimated foreshortening to calculate the wave speed of the
projected wave form yields v, = A, f,, = Pv,, = 0.147 mm/sec,
such that the mean centroid velocity is now 95% of the projected
wave speed. We can regard v, as the wave speed as measured
by an observer fixed to the medium. The 5% discrepancy could
be caused by roundoff error in the estimate of A, small amounts
of slip in the track, and also by the fact that the centroid speeds
were averaged over the whole time record, which involves in-
stances of non-locomotive modes. This is addressed later in Sec-
tion 3.3. Generally, we expect the wave speed to nearly repre-
sent the worm’s speed since not much slipping is observed in the
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Figure 5. Mode two, with real (solid line) and imaginary (dashed line)
parts. (The vertical axes are magnified compared to Figure 1.) The circle
marks the head.

worm’s track.

3.2.2 Second Mode The second mode is shown in
Figure 5. The traveling index is 0.3589, and thus it has more
standing qualities than the first mode. The second mode is in-
termittently active. The occurrence of activity in this mode is
strongly correlated with changes in 6(7), suggesting that this
mode represents a steering effort. This can be seen by look-
ing at the heading angle and its change (red and black solid
curves of Figure 6, top), along with the real part of the sec-
ond modal coordinate ¢»(¢) (magenta/lighter curve, overlapping
the black curve). The time derivative of the heading angle is
approximated by finite differences over a 60-sample range, or
about a 10 second range, which covers on average about three
primary-mode cycles, and is scaled by a factor of 10 in Figure
6 for visualization. The real part of the second modal coordi-
nate is plotted as its moving average over 60 samples (or ten
seconds). As the modal vectors are normalized to an amplitude
of one, and are unitless, the modal coordinates are in mm. The
plot of the moving-averaged second modal coordinate g(r) is
scaled by a factor of ten to visually bring forth the correlation
between ¢»(¢) and the change in heading angle. The product
q2(1)0(t) between the moving-averaged second modal coordi-
nate and the change in heading angle is shown in Figure 6 (bot-
tom). The positive bias in this graph, and the correlation coef-
ficient p,,q = E[(q2(1) — §2)(6(t) — 6)]/(04,04) = 0.70, suggest
strong correlation (p = 0 indicates no correlation, and |p| =1
indicates perfect correlation [39]).

o1
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x107°
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T 8
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£
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g 2

[aV]
-2

0 50 100 150 200
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Figure 6. Top: the heading angle G(I) (lower isolated curve, in red) in ra-
dians; the scaled change in angle 108(t) (black, overlapping), in radians,
computed by finite differences; and the real part of the scaled moving-
averaged second modal coordinate 10¢> () (magenta/light, overlapping)
in mm. Bottom: the product of the second modal coordinate and the

change in heading angle. g2 (#)6(t), in mm per second.

Indeed, the second-mode motion can be re-animated by
modulating the second complex mode with the second complex
modal coordinate, such that the activity of the second mode
is isolated, and by adding the heading angle 6(¢) back into
the motion, the correlation of second-mode activity and angu-
lar changes can be witnessed. A short segment of such mo-
tion, sped up, is shown in Movie 3 of the on-line version (or
http://www.egr.msu.edu/ feeny/FSCC12movie3.gif).
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3.2.3 Third Mode The third mode is shown in Figure
7 (a). The mode shape can be interpreted as similar to the first,
although noise polluted, but the real and imaginary parts are op-
positely phased, implying that it may be for reverse motion. A
wavelength of A = 0.621 worm lengths per cycle was estimated
from the complex whirl. The traveling index of 0.9248 suggests
a strongly traveling mode. To consider the possibility of its role
as a reverse locomotion mode, the “heading speed” and the third
modal coordinate activity are shown in Figure 7 (b). The “head-
ing speed” is computed as the inner product between centroid
velocity and the unit vector in the direction of the heading angle.
As such, the heading speed is positive when in forward locomo-
tion, and negative when in reverse. This worm does not do much
reverse during the four-minute time record. However, the reverse
activity during the last minute is coincident with bursts of third
mode activity. These bursts can be seen clearly although the en-
tire third modal coordinate is rather heavily noise polluted, which
is not surprising in regard to Section 2.4 since it is a low-energy
mode (about 3% of the signal energy, defined here as the sum of
the COVs, which we recall to be the modal amplitudes squared).
The modal pollution over the entire history, combined with the
few reversal events, reduces the significance of a correlation co-
efficient calculation. However, the features in Figures 7 (a) and
(b) support the interpretation of the third mode.

3.3 Short-Time Analysis of Locomotion

The above decompositions were applied to the entire time
record. Hence, the wave mode shapes represent spatial distri-
butions associated with forward locomotion, steering, and re-
verse locomotion, averaged in some way over the whole time
record. The decomposition can be staged to generate informa-
tion on the temporal variation of these spatial distributions by
applying the decomposition to sub intervals of the complex ana-
lytic time record.

Here we define the time interval for the short-time decompo-
sition as T = kT, where T = 1/ f,, = 3.2 sec is the period associ-
ated with the mean oscillation frequency of the dominant (loco-
motion) modal coordinate over the whole time record. The num-
ber of sampling indices for the interval is then Ny = [T /At],
where the brackets indicate the integer ceiling function. This
time window is centered at the sampling index i., and the analy-
sis is performed at values of i, starting at i = [ir /2] and ending
at iy = N — ig, with i, increasing at unit increments. As such,
there are a total of Ny = N — Nr overlapping windows. We ana-
lyze the dominant mode of each window. The overlapping leads
us to expect typically continuous variations in estimated features
such as wavelength.

T is a parameter in the analysis procedure. If T is small,
it refines the temporal resolution of the variation in motion fea-
tures. However, if T is smaller than a period of oscillation, or if
T is small but not commensurate with the ongoing oscillation pe-

real part ———- ; imaginary part — — -
0.4 : :

0.2¢

mode shape
o
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marker on worm

()

-0.2 ' ' : '
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Figure 7. (a) Mode three, with real (solid line) and imaginary (dashed
line) parts. The circle marks the head. (b) The upper dotted curve shows
the instantaneous centroid heading speed in mm/sec, and the lower solid
curve shows the third modal coordinate history.

riod, there could be some distortion in the features. We worked
with subintervals of the complex analytic ensemble, rather than
obtaining a complex analytic ensembles from subintervals of the
real ensemble, to avoid endpoint effects of leakage that would
result from the Hilbert transform, or the FFT and its inverse, of
a small subinterval. If T is large, temporal resolution would be
coarse, features would be averaged over larger time records, and
variations of features of motion would thus be filtered.

Thus, we would like to make T as small as possible without
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introducing significant distortions. We ran short time decom-
positions for 7' = kt, with assorted values of k from 1 through
16. For example, with T =t (i.e. k = 1), we obtained an av-
erage wavelength of A; = 0.692 worm lengths per cycle with
a standard deviation of 63; = 0.114, and an average oscillation
frequency fi = 0.297 cyc/s with 671 = 0.101. (The “average”
value f; was obtained as the average of N; = 1387 values of
mean complex whirl rates of the modal coordinates of the short-
time decompositions. The value of 67 was the standard de-
viation of these mean short-time whirl rates.) The average of
the mean short-time centroid velocities was v; = 0.139 mm/s
with 6,,; = 0.046, compared to the product vy, = A1 f; = 0.1644
mm/s, which represents the wave speed through the spinal axis,
and vi, = Pvy,, = 0.140 mm/s as the wave speed seen by an ob-
server in the NGM.

For T = 31, from N3 = 1349 overlapping short-time win-
dows, we obtained A3 = 0.704 worm lengths per cycle with a
standard deviation of 633 = 0.146, and an average f3 = 0.307
cyc/s with 63 = 0.079. In this case the average of the mean
short-time centroid velocity was v3 = 0.139 mm/s with 6,3 =
0.043, which is about 80% of the spinal wave speed v3,, = A3 f3 =
0.174 mm/s. The mean projected wave speed was v3, = 0.148
mm/s, and the standard deviation was 63, = 0.034. The varia-
tion of wavelength, and the short-time averaged centroid veloc-
ity, projected wave speed (v3,), and frequency for T = 37 are
shown in Figure 8. The plot shows that there is mostly continu-
ous variation in the wavelength, except for some isolated spikes
which reach values off of the scale of the graph to about 1.8 worm
lengths per cycle. The spikes occur in the vicinity of a lull in
speed and frequency, also near a time in which the worm had a
short instance of reverse locomotion (Figure 7). It is likely that
the spikes in wavelength correspond to instances when the loco-
motion mode is not dominant, giving way to another mode (such
as reverse). In such an instance, perhaps the transition distorts
the short-time extracted modes. The histogram of wavelengths is
also shown in Figure 8. Most of the wavelength activity is near
the mean wavelength, while a few occurances at higher wave-
lengths are present. These features are qualitatively consistent
with those in [19]. These higher wavelengths likely represent
brief instants of non-locomotive activity.

For these data, calculations with 7' = T through T = 47 pro-
duced these spikes in the short-time average wavelength plots.
For T > 4.5t and higher, these spikes of higher wavelength were
not produced. It is likely that if the short-time interval is long
enough, then mode changes, such as reversals, do not dominate
the interval, and the locomotion mode remains primary.

For T = 51, from N5 = 1311 short-time windows, we ob-
tained As = 0.686 worm lengths per cycle with a standard de-
viation of o35 = 0.043, and an average f5 = 0.308 cyc/s with
Grs = 0.061. In this case the average of the mean short-time
centroid velocity was vs = 0.139 mm/s with 6,5 = 0.035, again
80% of the spinal wave speed vs,, = 5»5 f5 = 0.173 mm/s, while

the mean projected wave speed was vs, = 0.147 mm/s with
o5, = 0.025.

Figure 9 shows the short-time features for 7 = 5t. In this
case, the spikes in estimated short-time wave-length values are
not present near the lull in locomotory activity. The wavelength
has a continuous temporal variation. The histogram is centered
at the mean wavelength.

With a focus on the locomotion mode, the plots for 7 = 3t
have some distortions, higher temporal resolution, but more vari-
ation, compared to the plots for 7 = 5t. There are some trends
that are common among plots for a wide range 7, including T
not shown. In all cases, the estimations for wavelength, fre-
quency and wave speed were consistent with the estimations
A = 0.69 worm lengths per cycle, f,, = 0.31 Hz, the spinal wave
speed v,, = Af,, = 0.173 mm/s, and the projected wave speed of
vp =0.147 mm/s, obtained from the entire time record. Apparent
in the temporal variation plots, for example Figure 9, is a trend
for gradually increasing wavelength, and gradually decreasing
speed and frequency, over time. These trends occur amidst a
short-time fluctuation in these features. It may be possible that
either these gradual trends are related due to mechanics or be-
havior of crawling, or the gradual trends are not directly related,
but are influenced by an evolving state or environment of the
worm. The product, which is the wave speed, follows the fre-
quency profile more than the wavelength profile. After# =175 s
for T =5t and t = 180 s for T = 37, near the lull in speed, these
trends are disrupted. Also, the average projected wave speed, v,
was very close to the average centroid velocity. For the plotted
calculations associated with 7 = 3t and T = 5, the average cen-
troid velocity closely followed the projected wave speed, again
suggesting that crawling happened with little slip, when the pos-
turing was mostly focused on locomotion prior to the disruption
att =175—-180s.

Estimations of mean wavelength, frequency, and wave
speed, are also robust over a wide range of T, and are close to
the values estimated from a decomposition over the entire time
record. The histograms show some variation in the fine distri-
bution of occurances among bins (about 20 span the locomotion
wavelength) as T varies. As T increases, the temporal varia-
tion about the temporal trend is filtered. Accordingly, the stan-
dard deviation of the wavelength, frequency, and speed reduces
as T increases. The standard deviation in wavelength undergoes
a marked reduction as the high-wavelength spikes disappear with
increasing 7.

4 Conclusion

A crawling nematode produces a complicated traveling
wave in its posturing patterns. Complex mode representations of
the motion patterns allow the worm’s waveforms to be described
with fixed real and imaginary parts, which is an alternative to an-
imated descriptions of the wave patterns. The COD tool for de-
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Figure 8. The upper plot shows the temporal variation of the first-mode
wavelength in worm lengths per cycle (top solid curve), centroid speed in
mm/sec (dashed curve), projected wave speed in mm/sec (lower solid
curve), and dominant modal coordinate frequency in Hz (dashed-dot
curve) from short-time decompositions with 7 = 3T. The lower plot
shows a histogram of the short-time averaged wavelengths.

composing mixed traveling and standing complex wave modes
extracts modes as optimal distributions of signal energy, and was
thus applied to the posturing patterns of a wild C. elegans nema-
tode.

The COD indicates that the worm had a multi-modal pos-
turing behavior, involving at least a forward locomotion mode,
a steering mode, and probably a backward locomotion mode.
Here, “mode” means a characteristic shape and action associ-
ated with these maneuvers. The locomotion mode was dominant
in terms of its mean squared modal amplitude, and it was shown
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Figure 9. The upper plot shows the temporal variation of the first-mode
wavelength in worm lengths per cycle (top solid curve), centroid speed in
mm/sec (dashed curve), projected wave speed in mm/sec (lower solid
curve), and dominant modal coordinate frequency in Hz (dashed-dot
curve) from short-time decompositions with 7 = 5T. The lower plot
shows a histogram of the short-time averaged wavelengths.

to be closer to a pure traveling waveform than the steering, sec-
ondary mode. Although the reverse locomotion mode was sel-
dom active in this data record, evidence of its existence includes
the similarity to the forward mode but with a phase reversal, and
the coincidence of strong third modal coordinate activity with the
brief instances of backward crawling of this worm. This reverse
mode consisted of about 3% of the signal energy, and its modal
coordinate was rather noise polluted. A discussion of the effects
of small levels of noise on the COD was included.

Motion parameters, such as wavelength, frequency, wave
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speed and amplitude, of the isolated primary locomotion mode
were estimated. These parameters compared favorably with
those metrics computed previously with the Analyzer program.
The analysis approaches are complementary, and the overlap-
ping quantities provide a means for cross checking between each
analysis package. In the modal analysis approach, wavelength
was estimated from the extracted complex mode shapes, and the
frequency was obtained from the complex modal coordinate’s
complex whirl rate, and from its FFT. The estimated wavelength
represented an average modal behavior over the data record used
in the decomposition. The average wave speed was first com-
puted as the speed along the deformed spinal axis of the worm.
Accommodating foreshortening led to an estimation of the wave
speed in the medium, which compared very well with the cen-
troid speed, suggesting minimal slip while crawling forward on
the NGM.

Temporal variation of wavelength and frequency were ob-
tained by applying the decomposition over many shorter time
record windows. The short-time feature estimations were af-
fected by the length T of the short-time interval, but the trends
in the features were consistent, and the overall averages matched
the estimations from decompositions of the entire time record.
These calculations showed that the wavelength exhibited an in-
creasing trend over time, while the modal coordinate oscillation
frequency decreased slowly over time, and that short-time fluc-
tuations of wavelength were opposite those of frequency.

This paper has demonstrated the application of an analysis
method to a single data set of a single worm. In future work,
the COD can be used in concert with metrics from the Analyzer
program to describe spatio-temporal characteristics of behavior
patterns over a population of worms. It may also be used to de-
scribe characteristics of normal and abnormal posturing motions,
which can then be connected to the study of genetic mutations on
phenotypes associated with the posture patterns of wild-type C.
elegans.
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