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A nonsmooth Coulomb friction oscillator
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A forced Coulomb friction oscillator, whose frictional force is allowed to vary with displacement, is analyzed
geometrically. The equation of motion for the oscillator is piecewise linear. We geometrically observe the nature of the
flow in each region of solvability, and then see how these solutions interact at the boundary of the regions. The dynamics
of the flow is viewed in terms of a map on the boundary between the regions. For chaotic motion, we geometrically
construct the strange attractor, and show that its exact behavior is that of a one-dimensional map. The following dynamical
properties arise from the nonsmooth nature of the Coulomb friction law: the flow may not be invertible; the flow may
reach its attractor in finite time; the dimension of the attractor may be less than or equal to two; embeddings of an
observable may not be diffeomorphic to the full phase flow.

1. Introduction

A friction law that is often used in dynamical
applications is the Coulomb friction law, which
states that there is a static coefficient of friction
K, and a kinetic coefficient of friction u,. When
there is relative sliding between bodies in contact
(with a normal load N), a friction force wN
opposes the motion. When there is no sliding, a
friction force of magnitude less than or equal to
usN balances the external forces. This friction
law can be written as F = — Nf(x), where

f(x):"’*k’ x<0,
—pu=fx)=mn,, =0,
)=, £>0. (1)

We apply this friction law to a forced harmonic
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oscillator. The nondimensional equation of mo-
tion is

X+20x +x + n(x) f(%) = acos(f21), 2)

where a cos({2¢) is the harmonic forcing func-
tion, ¢ is the damping coefficient present when
the dry friction is removed, and n(x) represents a
normal load which may vary with displacement.
In particular, we let n(x) =1+ kx for x> —1/k,
and n(x)=0 for x<~-1/k to prevent friction
from occurring when the normal load between
the contact surfaces becomes negative (contact is
lost). This will be referred to as the realizability
condition, since negative friction would not be
observed in a mechanical system.

An interesting feature of this ordinary dif-
ferential equation of motion is that, because of
the friction function of eq. (1), it is discontinuous
and multivalued at x = 0. It is multivalued in that
f(0) can take on any value between — u, and u,.
Examples of other systems whose models may
have discontirmous functions are those involving
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impacts, shock and shock absorbtion, and sticky
contacts.

One approach to such a problem is to view it
as a piecewise continuous system, examine the
continuous pieces, and match them. Alternative-
ly, we might look at the behavior of a sequence
of continuous systems which in some sense con-
verges to the discontinuous system. This paper
takes the former approach.

A well-known consequence of having this
Coulomb function in the ODE is stick—slip mo-
tion [1, 2]. Sometimes during the motion, when
the velocity passes through x = 0, the static fric-
tion may balance the external forces. When this
happens, the oscillator remains stuck at zero
velocity until the driving function reaches a criti-
cal value such that the friction no longer bal-
ances the external forces, and motion resumes
(slips).

The case where k =0, and hence n{x) =1, has
been studied by many researchers. In 1931, Den
Hartog {1] solved this system for periodic mo-
tion. He did this by breaking the problem into
piecewise linear equations and exploiting sym-
metry in x. More recently, Shaw [2] extended
Den Hartog’s results and analyzed the stability
of these period orbits. Shaw found stable
periodic slipping motions, period-one and
period-two sticking motions, and beat phenom-
ena for { <1.

Unfortunately, by including k0, thereby
causing n(x) to be active and nonconstant in eq.
(2), we lose the symmetry in x. Hence, the
calculation of periodic orbits and their stabilities
in the spirit of [1] and [2] is extremely difficult.
We choose another approach for the analysis: we
graphically examine the qualitative nature of the
system. As a result, we are able to geometrically
construct the attractor, and make some further
statements about its behavior. This type of anal-
ysis has been done in classic nonlinear-vibrations
texts [3,4] for two-dimensional autonomous
systems.

Eq. (2) is piecewise integrable, that is, it is
solvable in subregions of the state space. We

geometrically observe the nature of the flow in
each of these regions of solvability, and then see
how these solutions interact at the boundary of
the regions. The dynamics of the flow are viewed
m terms of a map on the boundary between the
regions. From a qualitative picture of this map,
we can build the attractor, and show that

(1) the dynamical behavior reduces rigorously
to a one-dimensional map,

(2) the flow of the Coulomb oscillator may
not be invertible (previously reported by Shaw
[2)),

(3) the flow may reach its attractor in finite
time, and

(4) the attractor has dimension less than or
equal to two.

Takens [5] had observed these properties in
constrained systems, which have been discussed
in detail by Oka [6]. These properties are made
possible because the Coulomb friction law pro-
duces a discontinuous and multivalued vector
field (the same mechanism responsible for stick—
slip motion). A consequence is that embeddings
of an observable may not be diffeomorphic to
the full phase flow. Other properties may arise in
other systems with discontinuities. For example,
in a problem modeling shock, Antman [7] unco-
vered nonunique solutions.

2. Piecewise linear equations

To simplify the analysis, we look at the special
case of eq. (2) where u, = p, =1. Based on
dynamical friction measurements in an ex-
perimental oscillator with titanium contacts, this
is a reasonable assumption [8]. Further, we neg-
lect the viscous damping term (X (in the ex-
perimental oscillator, the damping ratio was
measured as ¢ = 0.015 [9]). Finally, out of inter-
est, we will only look at the case where k> 1 (as
k passes through 1, the nature of the sticking
region, described in section 2.1, undergoes a
significant transition {9]). Eq. (2) can be written
for regions in which they are solvable:
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X+ A+ kx=-1+acos(21),

>0, x>-1/k, (3a)

X+ (A-k)x=1+acos(2t),
X<0,x>-1/k. (3b)

For x=-1/k, the normal load becomes zero
due to the realizability condition, and we have

i+x=acos({2t), x<-1/k. (3¢)

For —1<k <1, eq. (3b) has harmonic solu-
tions. For k > 1, the solution of eq. (3b) consists
of a driven saddle.

Let D denote the (x, t)-plane (¥ = 0) and con-
sider the mappings of the flow at D:

P& —-D, x>0,

P :©—-D, <0,

where P is the map that arises from the flow of
eq. (3a), and P is the map that arises from the
flow of eq. (3b), and & C D and ©C D denote
the domains of P* and P, respectively. The
goal is to describe the maps P* and P~ geometri-
cally, and see how they interact with the sticking
region, described below. The idea is sketched in
fig. 1. For simplicity, we will start the discussion
by omitting eq. (3c), which arises from the
realizability condition. Thus we will discuss the
mapping between the flow of eq. (3a) and eq.
(3b). This analysis is of interest anyway, since
regular and chaotic motions confined to the re-
gion x > —1/k are observed in numerical integra-
tions. The results will be completed by including
eq. (3c) numerically.

2.1. The sticking region

Analysis of eq. (2) for x=0 leads to the
concept of sticking regions, also discussed in {1]
and {2]. First, it is helpful to write eq. (2) as a
system of first-order ODEs:

Fig. 1. Trajectories governed by each piecewise linear equa-
tion are associated with either the map P*: @ — D, for
trajectories in ¥ >0, or the map P~ : ©— D, for trajectories
in ¥ <0. Some orbits get mapped into the sticking region R,
where the motion remains constant until such time that the
point is no longer in the sticking region. The curves C, and
C, represent the boundaries, in D, between the sticking
regions R and the domains @ and © of P* and P, respec-
tively.

X,=—x,— n(x;) f(x,) +acos(2t) . (4)

The sticking region can be found by analyzing
eq. (4) for fixed points and using the multi-
valuedness of f(x,) at x, =0 [2, 9]. However, we
will describe the sticking regions using another
viewpoint which will help set the mood of this
analysis.

If we write egs. (4) in extended phase space
for x >0, we have

X, =x,,
i, =—(1+k)x,—1+acos(2t), x,>0,

[=1. (5)

By looking at the sign of x;in the (x, f)-plane D,
where x =0, we find regions where the flow of
egs. (5) is upward and regions where the flow is
downward. The curve (in the plane D) dividing
the regions, called C,, is given by x, =0, which
yields

—1+ acos{{21)
Gix=—97g
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We can do the same for the case of x <0. The
equations in extended phase space are

X, =Xy,
%= =(1=k)x; + 1+ acos(21), x,<0,

f=1. (6)

The regions for upward and downward flow on
the (x, 1)-plane D for eqs. (6) are separated by a
curve C,, which is given by ¥, =0, or

_ 1+ acos(21)

Gyt xg T

Since the flows of egs. (5) and (6) meet at D, we
try to match the flow above D with the flow
below D. There are some regions where the flow
of equations (5) is directed from x > 0 toward D,
and simultaneously the flow of egs. (6) is dir-
ected from x <0 toward D, producing a conflict
in the flow directions. (Similarly, there are re-
gions where the flows from both ¥ >0 and x <0
are directed away from D.) These regions of
conflict are the sticking regions R, shown in fig.
2. Regions where the flow directions agree and
are upward (toward ¥ >0) are labeled &, and
regions where the flow directions are downward
(toward x <0) are labeled ©. In the region
“above” (defined as {(x, 1):x > x" and x > x?,
where (x'V, 1) € C,, and (x®, 1) € C,)}) both C,
and C,, the flows of both equations (5) and (6)
are directed toward the (x, t)-plane. Hence, or-
bits hitting this region are trapped in D, x re-
maining fixed, as time evolves, until the moment
that the direction of flows is in agreement. The
multivaluedness of f(x,) provides a bridge be-
tween the flow of egs. (5) and the flow of egs.
(6), and allows this trapping to take place. In the
region “‘below” both C, and C,, the flow of both
systems is directed away from the (x, t)-plane.
Unless we are on the region, orbits will be taken
away from it. Thus, it is an unstable sticking
region and is not expected to be observed.
Conveniently, x = —1/k at the intersection of
C, and C,, so the unstable sticking region is not
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Fig. 2. The sticking regions when (a) the physical-realizabili-
ty condition is ignored, (b) The physical realizability condi-
tion is observed. & and © indicate upward and downward
flows. R indicates the sticking region. B” labels the portion
of C, with positive slope, bordering €, and B~ labels the
portion of C, with positive slope, bordering ©. In (b), C, and
C, are pieces of the same curves in (a), drawn at a different
scale. £2=1.25,a=1.9, and k=1.5.

physically realizable, and so it will never be
observed. (It is, in fact, irrelevant.) If we apply
the realizability condition, the direction of flow
for x < —1/k is then governed by eq. (3¢). The
curve C, separating regions of upward and down-
ward flow in eq. (3¢) is given by

Cyix;=acos(2t), x<1l/k.

The curves C;, C,, and C; all intersect at the
same points:

x=-1/k, t= !

=0 arccos(—1/ak) .
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The multivaluedness of f(x,) at x, = 0 is neces-
sary for the existence of solutions in the sticking
region. If f were a single-valued function, and,
say, f(0) =0, what would happen? A trajectory
in the sticking region in D would be governed by
the equation (2) with f(0) = 0. This reduces to a
case where there is no static friction, and has the
form of eq. (3c). An orbit in D would be, with
probability one, directed out of D. Such a trajec-
tory, if it were to exist, would have to leave D
immediately. But it cannot leave D since the
flow outside D is directed toward D. So the
trajectory does not exist. The multivaluedness of
f provides a bridge for the flow across D through
the sticking region.

2.2. Graphical display of solutions

The flow of eq. (3a) consists of a homoge-
neous part and a particular part. The solution is
of the form

x(t) = A cos w(t — t,) + Bsin w(t — t,)
1 . a
1+k 1+k-0Q

5 cos({2t)

where = VI+k, 2°#1+k, and 4 and B are
determined by the initial conditions. In (x, %, 1)-
space, the family of solutions is a set of nested
tubes. Exploiting the periodicity of the excita-
tion, the family of solutions is a set of nested
tori. Given some initial conditions, the flow of
eq. (3a) is confined to some tube (fig. 3). This
flow is good for x > 0. A solution tube interact-
ing with D looks like a worm or eel coming out
of the water, and reentering the water. Some
worms are so fat that they never get their bellies
above the water. The family of worms intersects
D, in the set (not a Poincaré map) shown in fig.
4. A solution based at a point such as A will flow
along a tubular solution surface until it next
returns to D at A'. Thus, P*(A) = A’. Similarly,
in fig. 4, P*(B)=B'. Fig. 4 also shows that,
depending on the values of {2 and &, the orienta-
tion of the solution tubes can be flipped, due to

Fig. 3. A solution tube with £2°<1+ k for the equation
valid for positive x,. The axis of the tube is the particular
solution, about which the homogeneous solution oscillates.

the phase angle in the forced response of har-
monic oscillator.

Likewise, the flow of eq. (3b) consists of a
“saddle” driven along the particular solution.
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Fig. 4. The pattern of the solution tubes intersecting D with
@ 2 <1+k,and (b) 2°>1+k
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The solution for eq. (3b) when k>1 is of the
form

x(t)=Ee 70 4 FertT

. —.
1—-k

1= ka_ 0° cos({21)

where r=Vk -1, 2°#1~k, and E and F are
determined by the initial conditions. Given some
initial conditions, the flow is confined to a family
of saddle sheets. The intersection of these saddle
sheets with D is shown in fig. 5. In the figure,
P (A)= A’ demonstrates how a point may map
according to the flow of eq. (3b).

Any orbit lies on some solution tube for x > 0.
When the trajectory passes through D, it may
interact with the sticking region. If the flow goes
below D, where x <0, it will be confined to a
saddle sheet until it passes through D again. (It
is possible that a trajectory on a saddle sheet will
approach «, never returning to D. By enforcing
the realizability condition, such an orbit will
eventually enter a region of frictionless oscilla-
tion, and return to the region of friction.) For
these flows, the mappings P': & - D and
P : &— D can, in principle, be constructed. We
would like to see how the active regions (non-
sticking regions) map under P~ and P~, and how
they interact with the sticking regions.

Fig. 5. The pattern (not a Poincaré map) created by the
intersection of saddle sheets with D for the flow of the
equation valid for negative velocity.

3. Qualitative mapping of regions

In this section, results are presented for pa-
rameter valuesof a =19, 2 =125, and k=1.5,
uniess otherwise stated. They were chosen as
parameter values which qualitatively modeled
the experiment, although they do not correspond
to measured parameter values.

Referring to fig. 2a and neglecting the
realizability condition, we consider the mapping
of the region @ via P", and the mapping of the
region © via P ™. If R is the sticking region, then
@UOSUR=D. Motions in R either stay in R
forever, or, through the evolution of time, exit R
into @ or © via the map S: R— B U B~, where
B” and B~ are part of the boundaries of & and
© as shown in fig. 2. (The sets B” and B~ are
the components of C; and C,, respectively,
through which sticking orbits originating in R
must pass as they exit R.) Therefore, the system
can be understood through the mappings of
@ and ©. Certainly P ()N @ =0, and
P (©)N©=4. It is also likely that P*(®)N
R#®, and P (©)N R#0.

We want to qualitatively describe the images
P*(@) and P (©). Some information lies in the
flow on a solution surface, which is locally equiv-
alent to flow on a plane. For example, consider
the solution surface M shown in fig. 6a, and its
intersection with the curve C, at point C. Flow in
the neighbourhood of C on M, as seen from
outside of the worm, is locally equivalent to flow
on the plane, either in fig. 6b or 6¢c, depending
on the direction of flow. We can determine the
direction of flow on M near C by its geometry
and the forward nature of evolving time. In the
case pictured in fig. 4a, the forward nature of
time near C indicates that the flow on M (as seen
from outside the tube) is like that of fig. 6b. The
flow folds the (x, t)-plane about C, like a hinge,
in that points in the neighborhood of C get
mapped into a neighborhood of C.

If the mapping of @ has a hinge on part of C,,
consider the mapping P* of a neighborhood
U C© of the hinge. P*(U) is also a neighbor-
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Fig. 6. (a) The intersection of a solution tube M with curve
C, at point C is shown in a left-handed coordinate system.
(b), (c) The possible topologically equivalent flows in R>. The
axes x’ and t' correspond locally to x and ¢.

hood of the hinge in RU &. Therefore, since
the hinge is adjacent to R, P*(U)NR=W #§.
Points in the set W remain in R until time
evolves such that they are in B. The map
S: R— B~ UB" is singular - regions in R are
condensed to B and B”. Hence, the map is not
invertible, and the flow is not invertible. This
was also discovered by Shaw [2]. This noninver-
tibility is the key to the other properties we will
observe.

Similarly, flow on a solution surface such as

o7

X

//\\/ ;
7/ / \/
Fig. 7. The trajectories on a saddle sheet near its intersection

with curve C, are represented by this equivalent flow in a
plane. The axes £’ and ¢’ correspond locally to ¥ and 1.

that which intersects D as in fig. 5 is locally
similar to the two dimensional flow in fig. 7. This
picture varies depending upon the distance of the
saddle surface to the saddle’s stable and unstable
manifolds.

Computer-generated mappings of @ for pa-
rameter values which produce a hinge in the flow
about the curve C, discussed above are shown in
fig. 8.

The dynamics of the Coulomb oscillator can
be described by successive mappings of @ or &,
under P*, P7, and S, when appropriate. Fig. 9
shows the computer-generated sequence of map-
pings of © for a partieular set of parameter
values. The process accounts for the realizability
condition. Within one period of time, the entire
region of initial conditions has been crushed into
a set of curves. This smashing is not asymprotic!
It occurs suddenly in the sticking regions. The
attractor lies in the images of B” and B~ (shown
in fig. 2). Many initial points will be condensed
onto the attractor in finite time.

The result in fig. 9 suggests that we only need
to understand mappings of B” and B~ to under-
stand the long-term behavior of the entire sys-
tem. When we study the system in this way, we
are implicitly assuming that all orbits eventually
pass through the sticking region, exiting onto B ™"
and B". We must therefore ask: under what
conditions do all orbits pass through the sticking
region?
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Fig. 9. Successive mappings of ©. Within one period of
excitation, the entire set of points has condensed to a line.
The physical-realizability condition is enforced. The parame-
ter values are 2 =1.25,a=1.9, and k=1.5.

Proposition. If the inverse image and the for-
ward image of © (or ©) do not intersect in D,
then all orbits will pass through the sticking
region.

Proof. Suppose—1 P (&)N Pvl( B)=0. If a
point r&P’ (©), and re€®, then
r,=P"(r) € 6. Since P(®)ND =0, r,ER.
On the other hand, if r € Pwl(@), and re @,
then r,=P"(r)€6©, and r,= P (r;). By the
hypotheses that P (©)NP* (®)=0, r, &
P+—1(6). Since r, & P+_1(@), we have seen in
the above argument that P*(r,) € R.

In other words, if we follow any point s start-
ing in ©, its mapping r= P (s) will be in the
image of ©, P™(&). If P™(©) does not intersect
the preimage of ©, then r is not in the preimage
of &. If r is not already in R, then its mapping
P7(r) will certainly be in R, and the motion will
stick. In the case when the initial r € R, the
motion begins trivially in the sticking region.

The proposition provides a sufficient condition
for all trajectories to eventually pass through the
sticking regions. We need not prove the proposi-
tion of the images and preimages of €& because
all orbits in @ either map to R or to ©.

Fig. 10 numerically shows that P~ (©) does not
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Fig. 10. Due to the periodicity of time, the two regions © are
identified. The preimage of © and the forward image of © do
not intersect, therefore all orbits pass through the sticking
region. In reference to section 5, a discontinuity in the
mapping on D is illustrated by the mappings P’(p) and
P*(q), which start arbitrarily close, but get mapped far
apart.
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intersect P+_](6) for the chosen set of parame-
ters, thus all orbits pass through the sticking
region.

The sequence of mappings of the boundary of
© can be viewed as a one-dimensional tent-like
map. Depending upon the degree of stretching
and folding, we may have periodic or chaotic
dynamics. The dynamics of this oscillator has
been shown to be associated with a one-dimen-
sional single-humped map [8,9]. Unlike the
usual case where the one-dimensional map is an
approximation which exploits a strong stable
foliation, this one-dimensional map arises ex-
actly.

4. Construction of the attractor

The sequence of mappings of B~ can be
viewed by wrapping f mod(2w/Q) around and
back to itself (in S'). These mappings can then
be extrapolated into a flow in (x, ¥, t mod(2w/
{2))-space. The resulting template (fig. 11) re-
sembles the numerical solution displayed in the

D

Fig. 11. The attractor is constructed by identifying periodici-
ty in the time variable, and extrapolating the previous map
sequence into a flow.

same space (fig. 12). The motion is in a branched
manifold. Whether the branched manifold pro-
duces a strange attractor or a periodic attractor
depends upon the degree of stretching, which
depends on parameter values. Whether all the
motions go through the sticking region also de-
pends upon parameter values.

The Lorenz attractor [10] and the Rossler
attractor [11] lead to prime examples of branch-
ed manifolds. (Guckenheimer and Holmes [10]

LA AN S S B N S D SR B SIS SN A S S S SN S B I N A A

PO ST S YU WONS SN YUY UK ST ST ST SO S

l

ORI WU DO I ST ST VT ST WO T S N ST ST T YO ISR TRT AT S ST ST ST

FYNNUIE VAN YOO TR ST ST WOT SN SUNEK ST ST S

Fig. 12. A numerical solution of eq. (2) with 2 =1.25,a=1.9, and k = 1.5, displayed in three dimensions. The radial coordinate
axis is x, the circumferential coordinate axis is  mod(2w/2), and the cylindrical axis is x.
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demonstrate the construction of the Lorenz
branched manifold, and further geometric analy-
sis.) Their motions are strongly asymptotically
attracted to the branched manifolds. The semi-
flow on the branched manifold is an approxi-
mation, and does not fully represent the detailed
behavior of the system.

In the Coulomb oscillator, however, the mo-
tion is condensed suddenly (not asymptotically)
onto the branched manifold. This noninvertible
condensation, caused by the discontinuity and
multivaluedness of the Coulomb friction law,
gives the Coulomb oscillator the opportunity to
have a strange attractor in a two-dimensional
manifold. The dynamics in the branched man-
ifold fully represents the long-term behavior of
the system.

When analyzed using constrained equations,
chaos in Lorenz- or Rossler-like attractors is also
confined to a two-dimensional manifold [12].
Another oscillator which has some similarities in
its structure is the self-excited friction oscillator
which can move through a one-way trap door,
modeled by Troger [13].

The entire attractor for this system consists of
the attracting branched-manifold, and of the per-
manent-sticking region which surrounds this to-
roidal structure. the permanent-sticking region
exists on D for all x, greater than the maximum
of (—1+a)/(1+k) and (1 ~a)/(1~— k). These
values represent the maximum values of curves
C, and C,. All points landing in this part of the
sticking region are stuck forever.

The dynamics on branched manifolds may be
viewed via one-dimensional maps, i.e. maps of
the form s, ., = g(s,). A map that would account
for both the dynamics on the branched manifold,
and the permanently sticking motions, would
consist of a component (s, =0) resembling a
single-humped map, and a component (s, <0)
coinciding with the identity line, respectively
(fig. 13). The component coinciding with the
identity line produces an infinite locus of fixed
points for all s, <0. Motions on 5, >0 are dy-
namic, and may have periodic or chaotic attrac-

s(n+1) 4
2

Fig. 13. A one-dimensional map schematically represents
motion on the branched manifold, and permanently sticking
motion. The logistic-like component, defined for s, >0, pro-
duces dynamics like that on the branched manifold. The
component confined to the identity produces a locus of fixed
points for all s, <0.

tors. Motions that get mapped to s, <0 are
trapped there forever. The map defined fors, >0
was obtained from a return map on a coordinate
defined in the Poincaré section of the numerical
solution (fig. 12).

5. Basins of attraction

The flow through some initial regions of phase
space will eventually be attracted to the branch-
ed manifold, while flow through other regions
will be imprisoned in the permanent-sticking re-
gion. Which points will go where? What is the
nature of the basin of attraction of the branched
manifold?

In fig. 14a we have plotted points in the (x, ¥)-
plane, at initial time ¢= 0, which flow onto the
branched manifold. Trajectories in the grey area
flow to the branched manifold. Therefore, initial
conditions in the grey area lead to solutions
which are controlled by the dynamics of the
branched manifold. Orbits in the white area flow
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Fig. 14. The basin of attraction of the branched manifold, for
=125 a=1.9, and k= 1.5, is shown in grey. (a) The
initial conditions in x and % are chosen at time ¢ = 0. (b) The
initial conditions in x and  chosen on D.

to the permanent-sticking region, where they will
stay forever. Fig. 14b shows the points in D
which map to each part of the attractor. This
system is an example of a chaotic system which
has smooth basin boundaries. Another example
of such a system is the Hénon attractor [14].

In dynamical systems, basin boundaries
[14,15] are defined by stable manifolds (of un-
stable objects) which separate flows to one basin
from another. However, in this case, it is helpful
to visualize the basin boundaries through map-
pings in D. A map of a region in D arises from a
linear flow which takes the region from D and
returns it to D (or enters another subzone, as in
the enforcement of physical realizability). Some
chunks of this original region in D simply return

to D in the permanent-sticking region, and some
do not. Those that do not land in the permanent-
sticking region get mapped again, according to a
linear flow. Again, of these continuing images,
some land in the permanent-sticking region, and
some do not. There is a simple boundary
separating points which land in different regions.
There is no asymptotic repulsion from this sim-
ple boundary. Trajectories on either side of this
boundary merely glide along next to each other,
unaware of any cultural differences, until they
land on opposite sides of a fence, one being
static, the other dynamic.

What happens to orbits which land directly on
the fence? The permanent-sticking region is de-
fined by maximum x,, of both curves C, and C,,
for all +. Whether x,_, is defined to be in the
permanent-sticking region, or in the dymanic
region, is arbitrary. If this maximum is defined as
in the sticking region, then points in the basin
boundary map to the permanent-sticking region.

Fig. 15. Embeddings of a sticking observable may not be
homeomorphic to the flow in phase space. During the em-
bedding, points in the sticking region between AB and CD in
phase space get crushed noninvertibly to EF, which lies on
the identity line in a rotated embedding space.
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If this maximum is defined to be free to map
through P* or P, then it is considered to be a
point in the basin of the branched manifold. If,
for example, the permanent-sticking region is
defined by the maximum of curve C,, denoted as
r, then P~ (r) = r, making r a fixed point of P~
and thus a periodic point in the flow. Points on
the basin boundary would collapse onto this
periodic orbit. Regardless of the definition of the
status of x_, its trajectories will coincide with the
boundary between the permanent-sticking region
and the active region.

Is it possible to have basins of attraction that
are not simply connected in D? (If one basin of
attraction were not simply connected, then the
other would be disconnected.) Basically, the
basin boundaries are preimages of the boundary
of the permanent-sticking region. This boundary
is connected. Thus, if the combination of map-
pings P*, P7, and S, of the plane D, which may
occur during a motion, compose a continuous
mapping, then the basin boundary would be
connected, and each basin of attraction would be
simply connected. However, these mappings
may indeed be discontinuous. This is illustrated
in fig. 10. The points p and g may be chosen
arbitrarily close to each other, yet on either side
of the boundary of P*'(©). An image P*(p)
lands near the border of ©. But the mapping
P7(q) lands in the sticking region, far from the
region ©. Thus, it would not be startling if we
observed disconnected basin boundaries in D.
However, the discontinuity in the map
P": @— D does not necessarily imply that
there be disconnected basin boundaries in D.

Furthermore, having a discontinuous mapping
on D does not mean that we have a discontinu-
ous flow. The mapping P is, in fact, defined by
a linear flow, which is continuous. Thus, a linear,
continuous flow can produce a discontinuous
map on D. What about piecewise continuous
flows involving sticking regions? As part of the
flow strikes the sticking region, and the neigh-
boring flow passes through D, could we see
voids, or separation, in the flow? For the oscil-

lator studied here, this will not happen. Since the
flows about the borders of the sticking regions
are hinge-like, suspected voids are continually
being filled.

6. A cautionary note on embeddings

Takens’ embedding theorem [16,17] states
that, if basic hypotheses are satisfied, the method
of delays of an observable produces an embed-
ding. However, our problem does not satisfy the
hypotheses for Takens” embedding theorem.
One of the basic hypotheses is that the observ-
able y € C’, where r =2. In our case, we choose
y = x. The vector field has a component which
corresponds to acceleration. Hence the discon-
tinuous vector field yields discontinuous accele-
rations, hence y & C’. If the observable is y = ¥,
then y & C.

Problems occur when orbits go through the
sticking region. The observable x is constant
while in the sticking region. An arbitrary sam-
pling rate will produce samples of x,, many of
which are captured during a time interval in
which x is momentarily constant, giving rise to
many consecutive samples of the same value. To
perform a three-dimensional reconstruction, we
construct pseudovectors x, = (X,,, X, .4, X, e2)-
For arbitrarily many values of k, there will be
many vectors coming from the sticking region
x>, m=i,...,], such that x} ., =X, .= X,.
The result is that the reconstructed sticking mo-
tions will occasionally pile up on the identity line
in psuedo phase space. This is shown in fig. 15.
In such case, the map which takes the real
manifold M, into the “embedded” manifold M,
is not invertible, and thus not a diffeomorphism.
If this happens, calculations for the characteriza-
tion of chaos, such as fractal dimension and
Lyapunov exponents, which typically rely on em-
beddings, will be meaningless. (In fact, for this
system, both numerically and experimentally,
correlation-dimension calculations from embed-
dings do not converge!)
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As a remedy for the dimension calculation in
this situation, we can limit the calculation to
points which are some distance r from the identi-
ty line (in pseudo phase space). For the
Coulomb oscillator with 2 =1.25, a=1.9, and
k = 1.5, the correlation dimension was computed
using the Grassberger—Procaccia method [18, 19]
for the attractor described by its three-dimen-
sional phase variables, and for the reconstructed
attractor. The attractor described by its phase
variables had a correlation dimension of 1.93 +
0.04. The reconstructed attractor, with r =0.25
in the box norm (the observable was in the range
of —1.0 to 1.5), had a correlation dimension of
1.87 = 0.02.

Such a calculation assumes that the topology
of the attractor is uniform, and that no critical
information about dimension is lost by omitting
the portion of the attractor that got crushed to a
line. However, if the attractor were to have
nonuniform dimension, dimensional information
may be lost when portions of the attractor are
omitted.

The potential failure of embeddings may also
expose a need for caution in control theory. For
a control theorist, the analogy of an embedding
is an observer construction, in which the states of
a dynamical system are estimated from informa-
tion contained in a small number of observables.
Loss of information could conceivably introduce
uncertainty in applying control forces.

8. Conclusions

A qualitative technique has been used to de-
scribe the dynamics of a discontinuous, mult-
valued Coulomb oscillator. The technique is a
three-dimensional extension of that previously
employed in classical texts on two-dimensional
automonous systems.

The analysis reconstructs an attractor similar
to that seen in numerical integrations. During
the reconstruction, it was shown that infinitely
strong contraction takes place during sticking

motion. Because of this condensation, a one-
dimensional map can describe the long-term
dynamics exactly. This is unlike the usual case in
which a one-dimensional map is an approxi-
mation which exploits a strong stable foliation.

Some other properties of the behavior which
result from the discontinuous and multi-valued
nature the vector field (the same mechanism
which gives rise to stick—slip motion) are:

- the flow may not be invertible,

- the flow may reach the attractor in finite time,

— strange attractors may have dimension less
than or equal to two,

~ “embeddings” of an observable may not be
topologically equivalent to the phase flow.

The embedding property is practical since em-
bedding techniques are often used on experimen-
tal data. A good model of an experiment is
sometimes unknown, thus the presence of dis-
continuities may be unknown. If an experimen-
talist were to apply embedding techniques when
hypotheses of the embedding theorem are un-
knowningly violated, the results may be mean-
ingless.

While there may be some debate over whether
discontinuities really exist in physical systems,
certainly near discontinuities exist, and to the
resolution of measurements, they may be indist-
inguishable from actual discontinuities.
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