Bifurcation Sequences of a Coulomb Friction Oscillator

B. F. FEENY
ETH Zurich, Institute for Robotics, CH-8092 Ziirich, Switzerland

F. C. MOON
Cornell University, Ithaca, New York 14853, U.S.A.

(Received: 18 April 1991; accepted: 12 February 1992)

Abstract. In some parameter ranges, the dynamics of a forced oscillator with Coulomb friction dependent on both
displacement and velocity is reducible to the dynamics of a one-dimensional map. In numerical simulations, period-
doubling bifurcations are observed for the oscillator. In this bifurcation procedure, the map arising from the Coulomb
model may not have ‘standard’ form. The bifurcation sequence of the Coulomb model is compared to that of the standard
one-dimensional maps to see if it exhibits ‘universal’ behavior. All observed components of the bifurcation sequence fit the
universal sequence, although some universal events are not witnessed.
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Introduction

The effects of friction in dynamics is potentially important in many areas of modern technology,
such as pin-jointed space structures, automobiles, railroads, and robotics. Friction is also
important in understanding our own environment, for example in the study of the sliding of
tectonic plates. Thus, there is motivation for much research in this area.

As there has been recent interest in strange phenomena, some systems with friction have
been shown to exhibit chaos. Grabec [1] modeled chaotic chatter of tool bits using friction and
plasticity. Popp and Stelter [2] revealed chaotic behavior in a periodically forced belt-driven
mass-spring oscillator, and in a belt-driven continuum. Carlson and Langer [3] studied a
mechanical model of an earthquake fault, combining a discretized mass-spring system with a
continuous system to yield unpredictable, complicated, catastrophic dynamics.

Our focus is on a harmonically forced single-degree-of-freedom oscillator whose magnitude of
friction varies linearly with displacement. A mechanics model is shown in Figure 1. The
nondimensional equation of motion is

X+20% +x+ n(x)f(£)=acos Qt, D

where n(x) represents the normal load, and ¢ is the damping ratio for the oscillator when the
friction is removed. The coefficient of friction f(x) obeys the Coulomb friction law, and hence the
following rules:

fx)=—m, x<0,
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Fig. 1. Mechanics model for a forced oscillator with dry friction. The friction plates are fixed to the mass m, and slide
relative to the friction pads, which are fixed in x. The friction surfaces are not paralleled in the direction of displacement x.
Thus, the elastically loaded normal forces vary with displacement.

—MsSf()é)Sp,:, =0,
fE)=m, £>0, (2)

where p, is the kinetic friction coefficient, and u, is the static friction coefficient. Den Hartog [4]
solved the case in which the normal load is constant (n(x) =1 nondimensionally) for periodic
motions. Shaw [5] extended Den Hartog’s results and included a stability analysis.

Our system differs by allowing n(x) to be nonconstant. We let n(x) =1+ kx for x > —1/k,
and n(x) =0 for x = —1/k to model a linearly varying normal load which goes to zero when the
sliding contact is lost. An oscillator with a somewhat similar friction law has been analyzed by
Anderson and Ferri [6]. In particular, we look at the case of u, = u, =1.

The undriven oscillator has a locus of infinitely many equilibria. When excited, oscillators
with friction exhibit stick-slip motion [4, 5, 7-9]. Sticking occurs when the velocity goes through
zero, and the external forces are such that the position is in this locus of equilibria. However, as
the magnitude of the periodic driving force increases, it soon reaches a value such that equilibrium
can no longer be maintained, and slipping motion resumes.

The oscillator of equation (1) can undergo regular and chaotic dynamics [7, 8]. An example
of motion in the state of chaos is shown in Figure 2 as a three-dimensional phase portrait in
cylindrical coordinates. In the figure, x is the radial axis, ¢ is the circumferential axis, and x is the
longitudinal axis. Due to the periodicity of the driver, the x axis can be wrapped around to form
the toroidal structure. Sticking motion can be seen as the green, planar portion of the image,
confined to zero velocity. Motion with positive velocity is shown in white, and motion with
negative velocity is shown in yellow. A trajectory starting near the outside edge of this deformed
torus evolves clockwise in time, returning near the outside edge after one revolution around the
torus. A trajectory starting near the inside, however, goes through the loop in positive velocity
and returns near the outside edge of the torus. The orbits in between are stretched and folded
during this action. This stretching and folding is the mechanism of chaos.

A Poincaré section, viewed as a slice in the time axis, is shown in Figure 3a. On a large
portion of this image, x =0, and the motion is sticking. On the rest of the image, x >0, and the
motion is slipping. Performing a return map on a coordinate s defined along the Poincaré section
reveals a one-dimensional single-humped map F(s) (Figure 3b). Thus, a one-dimensional map
undetlies the dynamics of the oscillator. This is also true in the corresponding experimental system
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Fig. 2. Numerical solution for equation (1) with £ =0, a=1.9, @ =1.25, and k = 1.5. Viewed in cylindrical coordinates,
the displacement is the radial axis, velocity is the longitudinal axis, and time is the circumferential axis. Green indicates
orbits in sticking motion, white represents orbits with positive velocity, and yellow depicts motion with negative velocity.

[7, 8]. We will describe how the one-dimensional map arises in the Coulomb model in a later
section.

Period doubling is the observed route to chaos. Figure 4 depicts the bifurcation diagram with
increasing parameter a.

Stick-slip motion provides a natural basis for producing symbol sequences during the motion,
where, for example, S represents motion which is sticking, and N represents motion which is not
sticking (slipping). For an experimental oscillator and a similar model, we had previously
exploited binary symbol dynamics to characterize chaos using binary autocorrelation functions and
macroscopic Lyapunov exponents [10].

In this paper, we extend the study by comparing the bifurcation sequence, and its associated
symbol sequences, of the Coulomb oscillator, with the ‘universal’ bifurcation sequence of
‘standard’ one-dimensional maps. Universal behavior refers to behavior that is consistent for all
parameter ranges in a given class of systems [11].
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Fig. 3(a). A Poincaré section of the numerical solution in Figure 2. (b) A return map on a coordinate s defined along the
Poincaré section reveals the underlying one-dimensional map F(s).
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Fig. 4. A bifurcation diagram shows period doubling to be the route to chaos. The bifurcation parameter, the driving
amplitude q, is increasing in this plot.
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From a mathematical viewpoint, universal behavior of standard maps has been studied in
detail. Thus, if a dynamical system exhibits universal behavior, then much is already known about
the system. In terms of system identification, examining whether behavior is universal might give a
clue as to whether the unknown system fits a standard class of systems. On the other hand, for
parametric system identification, where differences in behavior with respect to system parameters
is of importance, interest might be focused on nonuniform behavior.

Bifurcations of One-Dimensional Maps
One-dimensional maps of the type
xn+1 __/\g(xn)’ (3)

where the function g(x) satisfies certain assumptions, have been studied extensively [11-14]. When
considering universal sequences of periodic orbits, the critical assumptions are that

1. g(0)=g(1) =0,
2. g(x) is smooth with a unique maximum at x,, and A >0, and
3. g(x) has a negative Schwartzian derivative for x €[0,1] - {x,},

where the Schwartzian derivative for a function g(x) is defined as
_g® 3 ( &)2
Da80) gx)  2\g'(x)/ -
For discussions on metric universality, i.e., Feigenbaum numbers, we can relax the above
assumptions, and only assume g"(xy) <.

The dynamics of maps which satisfy assumptions 1 through 3 undergo a universal sequence of
bifurcations, where the bifurcation parameter is A. For A=}, sufficiently small, such that
X=X g(x),and |A,g'(x)| <1, ¥ is a stable periodic point of Ag(x). As A increases, a periodic cycle
remains until A = A,, at which the periodic point loses stability and a stable periodic cycle of
period two is born. A stable cycle of period two exists until A = A4, where the period two loses
stability and a period four is born. This period-doubling sequence continues, producing stable
periodic cycles of period 2", n—>®, as A approaches a limiting value A.. Given any A such that
A. <A <A, there exists an infinite number of unstable periodic cycles and a stable cycle of period
n. The stable cycle undergoes a similar period-doubling sequence as above, to a limiting value of
A, Typically, on a bifurcation diagram, windows of relatively low period n are identifiable to the
eye. When A > A_, orbits become unbounded.

The bifurcation sequence of the map (3) exhibits universal behavior, that is behavior common
to any function g(x) which satisfies the assumptions stated above. As the bifurcation parameter
increases, there will be a bifurcation sequence of stable periodic orbits. From this sequence, we
could construct a sequence of the period lengths of these stable cycles. A universal property is that
this sequence of period lengths is the same for all such maps. For each stable periodic cycle, there
exists a parameter value A such that one point p, of the periodic sequence lies at Xy. The value of a
periodic point p,(A) is continuous in A, and there is a region (A — 8, A+ 8,), for some §, >0,
8, >0, such that the periodic cycle remains stable, and P, stays near x, [13].
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Fig. 5. A periodic cycle of period five for a one-dimensional map. Points to the right of x, are labeled R, and points to the
left of x, are labeled L. The symbol sequence RLLL refers to the four iterates of the periodic-cycle point (period five)
nearest x;.

A symbol sequence for the periodic cycle can be defined by whether the ith iterate in the
cycle is to the right of x,(R) or to the left of x,(L). Since p, is arbitrarily close to x,, we assign the
symbol C to p,. For a cycle of period m, the remaining m — 1 iterates of p, are assigned the
symbols R and L. For example, if the periodic cycle had a period of five, the symbol sequence
might be CRLLL, pertaining to iterates of the point Jocated very near x,. The convention in the
literature [13, 14] is to drop the symbol C. Therefore, a symbol sequence for a periodic cycle of
period m is defined as the symbols of the m —1 iterates of p,. In our example, the period-five
symbol sequence is defined by the four symbols RLLL. This example is illustrated in Figure 5. A
second universal property is that the symbol sequences of each of these stable periodic orbits is the
same for all such maps.

Metric universality exists for maps which merely satisfy g"(x,) <0. In this case, the period-
doubling sequence occurs according to Feigenbaum’s ratio [11, 12]. If A, is the parameter value for
a cycle of period m2", then Feigenbaum’s ratio is

A.i—A
§=1lim — " =46692....

n+2 An-+-21

On the Coulomb Oscillator

The purpose of this section is to provide some background on the Coulomb oscillator, and to
demonstrate the source of the underlying one-dimensional map. Further details can be found in
references [7, 9].

System Geometry

A geometrical description of the dynamics of the friction oscillator can be used to explain the
source of the one-dimensional map F(s), and also to indicate the difficulty involved in obtaining an
analytical expression for the map. Some interesting dynamical properties resulting from the
one-dimensional map are also noted.

The discontinuity at x =0 is a convenient location for defining a map. In state space, the
plane D of discontinuity is the (x, ) plane at X =0. The plane D separates two regions in which
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the governing equations of motion are smooth. For x >0, the system ({ =0) obeys
5c‘+(1+k)x=—1+acos(9t), (4)
while for X <0, the system follows
,\'¢'+(1—k)x=1+acos(Qt). (5)

We examine the system when k> 1. In this case, when undriven, equation (4) contains a center,
and equation (5) has a saddle point.

Sticking regions can be described by observing the directions of the piecewise continuous
vector fields at D. When both vector fields agree to flow through D, the flow may pass through the
discontinuity. When both vector fields point toward D, there is a stable sticking region R. Flows
are trapped in R until time evolves such that the orbits are on either of the boundaries, B* or B,
of the sticking region. A map describing this action would be § : R — B UB . Sis singular since
it takes a two-dimensional region R and maps it into a finite union of curves. Figure 6 shows the
sticking regions for our system. € indicates the region where both vector fields at D point
towards positive velocity, and © depicts the regions where both vector fields point towards
negative velocity.

The map corresponding to the flow of equation (4) can be written as P* : @ — R U @©. The
map corresponding to the flow of equation (5) can be written as P~ ©: RU @. The dynamics can
be described in terms of these maps on D in the variables x and ¢, in conjunction with the map S.

Figure 7 shows the evolution of the entire set of orbits passing through © for q= 1.9,
Q=1.5,and k= 1.5. For these parameters, the entire two-dimensional region © collapses into a
one-dimensional curve. This geometrically illustrates the singularity which produces the one-
dimensional map F(s). The singularity is in the mapping S in the sticking region.

In this example, all motions pass through the sticking region. A sufficient condition which
ensures sticking motion is as follows: if P (O©)n P+_'(@)=ﬂ, then all motions must pass
through the sticking region. Indeed, a numerical test (not presented here) has shown that
P (©)nP* I( ©) = 0. For other parameter values, however, it may be that not all motions pass
through the sticking region. In such case, a one-dimensional map would not characterize the entire
limit set.
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Fig. 6. The sticking region R is depicted in the (x, y) plane D for k > 1. The region of flow toward ¥ > 0 is labeled & . The
region of flow toward ¥ <0 is labeled =.
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Fig. 7. Successive mappings of © show that, within one period of excitation, the entire set of points has condensed to a
line. This is how the one-dimensional map arises. The parameter values are a = 1.9, Q=1.25, and k = 1.5.

When all motions pass through R, knowledge of the mappings of the boundaries B* and B~
is sufficient to understand the attracting set.

From the geometric description presented here, certain properties of motion are evident in
Figure 7: the attractor has a capacity dimension d, <2; orbits reach the attractor in finite time;
and orbits are not invertible, indicating a loss of information regarding the history of motion.

These properties do not occur in smooth vector fields. They result from the dimensional
collapse which takes place in sticking motions. Dimensional collapse has been noticed in other
contact problems [15] and the properties mentioned can be observed in constrained systems [16].
Finite attraction time and loss of history in non-Lipschitz systems have been discussed by Zak [17],
who dubs such attractors ‘terminal’.

Dimensional collapse has a profound effect on the topology of the dynamics, and may disrupt
analyses (such as embeddings, and calculations of Lyapunov exponents and correlation dimension)
traditionally used with smooth systems. There is also a potential for having nonuniform topo-
logical descriptions of motion [7].

The Underlying One-Dimensional Map

An analytical expression for F(s) would consist of three components. One component would
involve orbits passing through the boundary B~ and their intersection with the plane D,
represented by P~ (B~ ). Finding y = P~ (x) requires the solution of transcendental equations. The
mapping P~ (B ") lies partly in R and partly in @ . Thus, the second component of the analytical
expression of the one-dimensional map would be a logical operation. The third component would
then be to either solve for the time at which trajectories in R leave the sticking region at B” or
B, or else to solve the transcendental equation representing those orbits which map to D via P

In short, the analytical description of F(s) is compounded with transcendental equations and
logical operations. Because of this complexity, we do not produce such an analytical expression,
and our work is done from a geometric standpoint.

The map F(s) (Figure 3b) may not satisfy all the assumptions in the above discussions.
Perhaps most importantly, F(s) does not fit the form of equation (3). It can be shown, for
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Fig. 8. A return map from a Poincaré section lying entirely in sticking motion reveals evidence that the maximum in the
one-dimensional map is smooth of the case ofa=19,0=1.25, and k=1.5.

example, that as a— , the map F{(s), where s € I is a normalized coordinate, approaches a limit
function in both magnitude and shape. Thus, F(s) # ag(s).

The ‘instantaneous’ shape function g satisfies the first assumption (if the coordinate s is
rescaled), but not necessarily the third. We do not obtain an explicit expression for the map, and
hence do not check its Schwartzian derivative. However, the maximum is smooth, at least for
some values of a. This is discussed below. Visual evidence is in Figure 8, which shows a delay map
from a Poincaré section taken at a time in which all motions are in the sticking region. Hence, the
Poincaré image is straight line and the coordinate § is cleanly defined.

To discuss the maximum of F(s), we must first locate it. To this end, we look at the image
P7(B,) in Figure 7. Close inspection indicates that this image has a local minimum in x at x = 2
for some value of ¢, (¢,~5.5 in the figure). Additionally, for the given parameters, this point z
denotes the maximum value of s in some Poincaré sections. In the Poincaré section at ¢ = 6.5, for
example, defining a coordinate § such that 0=§=<1 and §=1 at z shows that the point
(z,t=6.5)eD corresponds to the maximum value of §. In a Poincaré section at ¢ = t,, the point
(z, t)) € D represents S0, locating the local maximum in the underlying map.

Since a small neighborhood V € B, of the orbit passing through this critical point is governed
solely by a function P*(V) which Mmaps a curve monotonely increasing in x to a curve with a
smooth minimum in x (at x = z), the point s, represents a smooth maximum in the underlying
map.

We should point out that if P "(B,) were to lack a local minimum in x, then the point s, would
correspond to sticking orbits passing through the local maximum of the curve B” (Figure 6), and
thus s, would represent a boundary between two functions active in the one-dimensional map
(involving P* and P ). In general, such a map would not have a smooth maximum.

Bifurcation Analysis for the Coulomb Oscillator

The Coulomb oscillator is defined by equations (1) and (2). It is numerically integrated according
to an algorithm which accounts for the discontinuity at ¥ =0 [2, 7, 8].
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Since the equation of motion has a discontinuity at X = 0, the plane in (x, ¥, f)-space defined
by % =0 is a natural place to make a Poincaré section. In this Poincaré section we plot x for the
bifurcation diagram shown in Figure 4. The bifurcation diagram includes trajectories which
bounce off the underside (x < 0) of the (x, ¢) plane. (Some trajectories meet the (x, f) plane from
below, stick, and then return below the plane. This corresponds, for example, to motion near the
outer edge of the attractor in Figure 2.)

The method used to compare the bifurcation sequence in the Coulomb friction model to the
standard one-dimensional maps is as follows: We compute and plot a bifurcation diagram, which
has periodic windows. We identify periodic orbits visible to a parameter increment Aa of
Aa + 0.0005. In doing so, we look for stable periodic orbits of period less than eight. The infinitely
many higher periods are difficult to find because the ranges of A on which they exist are narrow.
We compare the sequence of period lengths of stable periodic cycles found in the Coulomb
oscillator with the universal sequence of stable periodic cycles. If a period five, say, appears in the
bifurcation diagram for a parameter value a = 4, then we observe the Poincaré section (from a
slice in time) of the motion with the parameter set to 4. In the Poincaré section the orbit will
consist of five points. From this Poincaré section, we can determine the symbol sequence of the
periodic points in terms of the sticking and slipping regions. We assign the symbol S to points
which are sticking, and the symbol N to points which are not sticking (slipping). We also compare
the symbol sequence of the stable periodic cycles found in the Coulomb oscillator with the
universal symbol sequences of stable periodic cycles. Finally, we estimate Feigenbaum numbers
from the Coulomb oscillator data.

This sequence of N’s and S’s will be analogous to the symbol sequence for the associated
map, and can be translated into a sequence of R’s and L’s, respectively. This translation is exact
when the Poincaré section is taken at tmod2w/Q corresponding to f,. This is because the
maximum of the underlying map occurs at the critical point s, corresponding to z, which is the
local minimum (in x) of curve P"(B,). At a phase corresponding to ¢, this point cleanly separates
sticking motions from slipping motions, as well as left from right.

However, when ¢+ t,, some other value of s# s, separates points that are sticking from
points that are slipping. As an extreme case, when 7= 6.5 in Figure 7, all points are in the sticking
region (a symbol sequence would trivially consist only of S’s). In the neighborhood of ¢, the
approximation of the N’s and S’s as R’s and L’s is reasonable due to the smoothness of the curve
P"(B,). Deviation of the N’s and S’s from the R’s and L’s represents an error in observation of
behavior, rather than an effect on universality. Our Poincaré section was taken at { mod 27/
0 =0.625. Based on Figure 7 viewed at ¢ ~5.6, error in the symbol dynamics should be small.

Results

A comparison of the sequence of periodic orbits, and their symbol sequences, for the friction
oscillator and the logistic map is in Table 1. For the logistic map, x,,, = Ag(x,) with g(x) =
x(1 — x). The values for the logistic map were obtained from [13] and [14] for periodic orbits of
period seven or less. Two higher-period events were added since they were accidentally found in
the friction oscillator.

The bifurcation sequence of a Coulomb friction oscillator, in some sense, resembles the
universal sequence of standard one-dimensional maps. The observed periodic orbits, their period
lengths and symbol sequences, of the Coulomb friction oscillator lie in the sequence of the
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TABLE 1.
The observed sequence of period length of stable periodic cycles in the Coulomb oscillator, and their symbol sequences,
are compared to the sequence of stable periodic cycles in the logistic map. Each cycle listed is the first of an infinite
period-doubling sequence, except those marked with a *, which arise from the previous cycle via period doubling.

For the Coulomb oscillator, § indicates points which are sticking, and N indicates points which are not sticking. The
symbol ® represents a point which was so close to the boundary between N and S that it was not distinguishable.

Each periodic cycle has one point which is very close to this boundary. We label such points with the symbol C. The
listed symbol sequence of a cycle of period m consists of the m — 1 iterates of the point labeled C.

Only cycles up to period seven are included in the table. Some of these cycles in the Coulomb oscillator were not
found. Incidents of a period eight and a period ten were accidentally found and included.

Oscillator Eq. (1) Map X, = Ax(1-x)
cf. [12, 13]
Period Symbol Seq. a Period Symbol Seq. A
2 N 1.36 2 R 3.2360680
4* NSN 1.38 4* RLR 3.4985167
8* NSNNNSN 1.3925 8* RLRRRLR not listed
10 NSNNNSNSN 1.4064 10 RLRRRLRLR not listed
6 NSNNN 1.415 6 RLRRR 3.6275575
7 NSNNNN 1.45415 7 RLRRRR 3.7017692
5 NSNN 1.4737 5 RLRR 3.7389149
7 NSNNSN 1.4909 7 RLRRLR 3.7742142
3 NS 1.535 3 RL 3.8318741
6* NSeNS 1.551 6 RLLRL 3.8445688
7 RLLRLR 3.8860459
5 NSSN 1.5973 5 RLLR 3.9057065
7 RLLRRR 3.9221934
6 RLLRR 3.9375364
7 RLLRRL 3.9510322
4 NSS 1.695 4 RLL 3.9602701
7 RLLLRL 3.9689769
6 RLLLR 3.9777664
7 RLLLRR 3.9847476
5 NSSS 1.833 5 RLLL 3.9902670
7 RLLLLR 3.9945378
6 RLLLL 3.9975831
7 RLLLLL 3.9993971

standard maps, although several events remain undetected. In other words, every event in the
oscillator is also in the universal sequence of events (but not vice versa), and the order of events in
the oscillator does not contradict the order in the universal sequence. Furthermore, the symbol
sequences associated with each observed periodic cycle in the Coulomb friction oscillator is the
same as in the corresponding periodic cycle in the standard one-dimensional maps.

There are two possible explanations for the fact that some bifurcation events were not
detected. One possibility is that these events took place on a parameter window smaller than the
resolution at which we chose to search. The other possibility is that the bifurcation sequence of the
oscillator in fact may not match the universal sequence of the standard maps. Such deviation could
occur since the map which arises from the Coulomb oscillator may not satisfy all of the
assumptions required for universal behavior in the standard maps. Thus, it is possible that we are
observing a nonuniversal bifurcation sequence in the Coulomb oscillator. Coffman et al. [18]
previously observed nonuniversal behaviour in nonstandard one-dimensional maps. In that study,
the nonuniversal events also occured in the universal sequence, but not according to the universal
order.
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In the investigation of metric universality, the parameter values in the initial period-doubling
sequence were measured to be compared with Feigenbaum’s ratio. We measured the parameter
value a, at the first period-doubling bifurcation, and a,, a3, and a,4 at the subsequent bifurcations.
We then compared

_ 44
r=———
as —a,

and
_ g4y
r,=—
Q16— Gy

to Feigenbaum’s ratio of 4.669 . . . . The estimates are r, =4.70 +0.25 and r, = 4.67 *0.65. In the
estimates, the parameter increment was smaller than that of the rest of this investigation. The
uncertainty is in the numerical integration. Within the scope of the error, it would not be unusual
for the ratio to converge nonuniformly. Higher bifurcations involve smaller window sizes, leading
to larger errors in the calculations of the r,.

Conclusions

The dynamics of the Coulomb friction oscillator is reducible to the dynamics of a non-invertible
one-dimensional map. The map is not proportional to the bifurcation parameter. Because of this,
and because of other considerations, such as the Schwartzian derivative, the map may not fit the
description of the ‘standard’ maps. Nonetheless, the bifurcation sequence of the oscillator has
been compared to that of the standard one-dimensional maps.

The observed periodic orbits, their period lengths and symbol sequences, fit into the universal
sequence. However, several universal events remain undetected. This may be because the
necessary assumptions are not all met, and that the oscillator does indeed exhibit nonuniversal
behavior. However, consideration must be given to the size of the increment in the bifurcation
parameter, Aa. If a periodic window is smaller than Aa, the window may not be observed.
Therefore, a statement regarding the nonexistence of a periodic window cannot be made, since Aa
can always be made smaller.
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