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An example of Lagrangian chaos or mixing in a solid material is presented here. The mixing
due to cyclic torques of rigid, perfectly plastic sheet is simulated. The plastic flow results in
an area-preserving map. Results are displayed as Poincaré maps, the stretching and folding of
an initial line of material points, the mixing of initial regions, and the eigenvalues about initial
points during one mixing cycle. The Poincaré sections show ite. tes of sets of points after each
cycle of deformation. The mixing diagrams provide evidence for horseshoe-like processes in the
dynamics. Single-cycle eigenvalues exhibit self similarity in the spatial structure.

1. Introduction

The problem of mixing, stirring, or advection has
been studied for fluids under a Stokes flow, which
is a creeping kinematic flow with no inertial and
dynamical effects [Aref, 1984, 1986; Chaiken et al.,
1989; Ottino, 1989a; Franjione et al., 1989; Ling,
1993a], and has been shown to be a practical appli-
cation of ideas of chaos. Through such studies, ef-
ficient methods have been developed for enhancing
chemical reactions and making polymers (see also
Ling [1993b] and the conference proceedings edited
by Acrivos [1991}]). The study of mixing may also
provide insight to geothermal processes, such as the
flow of magma [Ottino, 1989b).

In this paper, we examine the phenomenon of
Lagrangian chaos in the mixing of rigid, perfectly
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plastic niaterials. Mixing of plastic materials has
long been done by ceramic artists, producing
swirling patterns on pottery. There may be tech-
nical applications in forging processes and other
deformation-based forming processes. Furthermore,
studies of plastic materials may be applied to vis-
coelastic materials when the deformation rate is
very slow.

In the case examined here, the flow of rigid per-
fectly plastic material is solvable under some simpli-
fying assumptions. This yields a simple map, which
provides a scarce opportunity for analysis of mixing
flows. Our exploratory goal is to produce mixing di-
agrams, Poincaré sections, and to quantify stretch-
ing. Stretching can be useful in studying mixing
models, as done by Ottino et al. [1994] by means
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of horseshoe maps. The mixing diagrams involve
the use of color coding to show how four quadrants
of the two-dimensional material slab deform under
several iterations of the mixing cycle. The example
in this paper is a variation of the “blinking vortex”
models studied by Aref [1984] and Ottino [1989b],
but with a logarithmic flow field appropriate to plas-
tic materials replacing the vortex flow field.

A torque is applied about a point A in a sheet
of rigid, perfectly plastic material through a body-
force distribution Fy (per unit volume) in the tan-
gential direction in terms of polar coordinates (r,6)
centered at A:

2K

- 1)

Here, K is a constant. The body force (1) produces
a uniform shearing stress distribution,

6 = K, (2)

Fp =

which satisfies the equilibrium equations for a dif-
ferential element [Timoshenko & Goodier, 1970):

drre 279
dr T

We adopt the rigid, perfectly plastic model,
which is an idealized model of plastic low in a ma-
terial (see, e.g., Mendelson [1968]). For values of
shear stress less than 7y, the material remains rigid.

+Fy =0. (3)
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Fig. 1. Sketch of plastic sheet showing the two zones of de-
formation centered at the points A and B, located at (z, y)
coordinates (0, e) and (0, —e), respectively.

However, the material yields and flows when K =
7o, where 79 is the yield stress of the material in
shear.

Our mixing plan is to apply a torque at a point
A on the plastic sheet, and allow material to flow
for a certain amount of time. We then apply the
torque at another position B, and allow material to
flow for the same amount of time. The torque is to
be alternated between positions A and B (Fig. 1).
The patterns of flow are then to be observed as in
the blinking vortex model [Ottino, 1989a).

2. Development of the
Dynamical Equations

Given the body-torque distribution (1) on an infi-
nite plane of plastic material, and assuming that
there are no inertial effects, the deformation of a
material point can be written in terms of a simple
function. In polar coordinates, the shear strain rate
can be expressed as

] ou v v
'71'0—;'%'*"8_7”—;, (4)

where u is the deformation rate in the radial direc-
tion, and v is the deformation rate in the tangential
direction [Timoshenko & Goodier, 1970]. In the
theory of plasticity, the strain rate is related to the
stress by a flow rule when the stress reaches the
yield value 7yp;

Yro = aTrg = a7y, (5)

where « is a proportionality constant. If we assume
that the deformation is tangential during each half
cycle, then Eq. (4) becomes

dv v

5—;=a7'0. (6)

The general solution to this equation is of the form
v=r(ar,Ilnr+C), )

where C is a constant of integration.

We restrict the applied body torque to a cir-
cular disc of radius r = a (see Fig. 1). Thus, we
impose boundary conditions v(a) = 0, and obtain a
tangential deformation rate

v(r) =arrln 2 . (8)

In terms of rotation, the angular deformation is 8 =
tatoIn L, where ¢ is the time for which the torque



is applied. Rescaling distance and time such that
7 = r/a and 7 = Arpt, and dropping the hat on #,
the expression for angular deformation is

6=7lnr, (9)

valid for 0 < r < 1. The only parameter is the
nondimensional time 7 of the applied torque. That
is, for any material parameters, and a yielding
torque, the time of the torque can be chosen to ob-
tain a desired angular displacement. (Increasing the
radius of the body torque causes an increase in the
radius of the deformation zone, which is rescaled to
r =1 in the nondimensionalization.)

In the numerical simulation, a torque centered
at a point A for a time 7 deforms material within
a radius of r = 1. Then the same deformation his-
tory is applied at a point B for a time 7, located
a distance 2e from point A, and deforms material
within a radius of 1. Alternating the deformations
about points A and then B defines a cycle. The
Cartesian coordinates of A and B are defined as
(0, €) and (0, —e), respectively. Initial conditions
(z, y) are translated into polar coordinates (r4,64)
centered at A. The material point evolves according
to (9) such that

g7t = 6% +7Inr", (10)
T;;—H =74,

where the superscripts denote the cycle count, not
a power. The values of TZ‘H and OZ‘H are converted
to polar coordinates (rp,0p) centered at B. During

the torque at B, the material deforms and we have

gt = 0% + rInr™, (1)
Tg+1 =75,

2

(1 - %y-'r) cosy — :—2Tsinz/;

2

r2

where 9 = tlogr and r = /z2+y2  Then,
det DF = 1 for all z and y, making the map area
preserving. The whole cycle, being a composition
of area-preserving maps, is also area preserving.
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completing a cycle of motion. The values of rp and
0p are converted to 74 and 64 and the process is
iterated.

The eccentricity e of points A and B introduces
a second control parameter in addition to the torque
duration 7. The study could be explored further
by varying the sequence of torques, which defines a
cycle, as done by Franjione et al. [1989].

3. Area Preservation

The plastic flow is area preserving, as can be guessed
by the Hamiltonian-looking Poincaré maps of
Figs. 2. This can be shown by translating Egs. (10)
and (11) into Cartesian coordinates. To do so, we
substitute Egs. (10) or (11) into

a;'/;TBl = r"*lcos g™+,

n+1

where 4 p and y4 p are the Cartesian coordinates
centered at A or B. After some algebra,

:v':‘j; = x4 gcos(TIn7")

- yﬁ,B sin(rlnr"),
(12)

n+l _ n n
Ty'g —yA,Bcos('rlnr )

+ 7% gsin(rlnr™).

These equations can be expressed as a vector equa-
tion z'/;‘f,} = F(z} p), where z = [z, y]T. In a given
cycle, some material points deform via F centered at
A or B only. Others deform through a composition
of F centered at A and F centered at B. A full cycle
of torque will be represented by z,+1 = G(z,). For
each half cycle, the Jacobian DF is given by

2
—-3:—27 cos — (1 + j—gr) sin 9
(13)

2
:1:_27_ cos?y + (1 — ﬂr) sin ¢ (1 + %’r) cosYy — y—27'sin1/J
r T T

The eigenvalues of DF are vy = (T+VT? - 4)/2,
where T' = trace DF = 2cos% — 7siny. Thus the
torque time 7 has a direct effect on the achiev-
able eigenvalues. As r varies, T oscillates with a
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Poincaré maps for the mixing of plastic material for various eccentricities and torque durations: (a) e = 0.3, 7 = 1.5,

(b) e=0.45, T = 1.5, (c) e = 0.5, 7 = 0.5, and (d) e = 0.5, 7 = 1.0. There are ten initial conditions, and each is iterated 500

times.

wavelength proportional to 1/|log(r)|. This wave-
length is very small for small r.

4. Numerical Results

The similation parameters are 7 and e. We present
the results in four ways: Poincaré maps, the stretch-
ing and folding of an initial line of material points,
the mixing of initial regions, and the spatial distri-
bution of eigenvalues during ene cycle.

Poincaré maps are shown in Figs. 2, showing
the effects of varying either parameter. These maps
show the stroboscopic motion of several different
initial points in the plane at the end of
each of the deformation cycles. Closed orbits show

quasiperiodic dynamics. Seemingly random collec-
tions of points give evidence for Hamiltonian chaos
or stochasticity. Stochasticity increases with in-
creasing 7. There is a maximum of stochasticity
with respect to eccentricity. If e = 0 (the circles
of deformation are identical), and similarly if e > 1
(the circles of deformation are disjoint), then there
is no stochasticity. The data in Fig. 2 show the
result of several hundred iterations. In contrast,
Figs. 3—7 (discussed below) show the dynamics af-
ter only a few cycles.

Deformation of an initial line element is
shown in Fig. 3 for various parameter settings
and at various cycles. Some portions of an initial
line stretch much more than other segments. It is
likely that the high stretching corresponds to high
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Fig. 3. The mixing of an initial line element for various eccentricities and torque durations: (a) e = 0.3, 7 = 1.5, n = 8§,
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tau=1.5,e =045
T T
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stochasticity in the Poincaré maps. The folding of
the line elements under the map gives some evidence
for the horseshoe-producing nature of the map.
Deformation of the four quadrants of material is
shown in Figs. 4 and 5. In the simulation, each ini-
tial point has an associated color, determined by its
quadrant. After a few iterations, the material point
is relocated, and plotted in its color. Under careful
observation, the material point which started at the
origin (the four-corners point) can be detected.
Next, we compute the eigenvalues of the varia-
tional map about a material point during one cycle.
Material points which merely deform through one

tau=2.0,e=045
T T

1.5
y
-1.5
(b)
Fig. 6. The spatial distribution of the maximum eigenvalue

of the variational equation throughout the material for one
cycle of deformation with e = 0.45 and (a) 7 = 1.5, (b) 7 = 2,
and (c) 7 = 3. There are ten contours ranging from 1 to 4.0
in (a), 5.8 in (b) and 10.9 in (c).

of the half cycles are associated with the Jacobian
(13) evaluated at the initial point. Material points
which deform through both parts of the cycle have
a Jacobian consisting of a composition of half-cycle
Jacobians coupled with a rotation matrix Rg. The
half-cycle Jacobians DF are evaluated at the points
(z4,ya) (referring to a deformation centered at A)
and at (zp,yp) (referring to a deformation centered
at B). Ry represents the change in orientation of
this material point, with respect to the instanta-
neous center of torque, as the torque is relocated
from A to B. Such a material point has an angle
64 about point A and an angle g about point B.
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Then ¢ = 64 — 6, and
Ry = [cosd) —sm¢] -

sing cos¢

If G represents a full cycle of the map, then the
linearization of the full cycle is DG = DF|;, 4,
for material points which only undergo deforma-
tion during the torque about point A, and DG =
DF |z, ,yp for material points which only undergo
deformation during the torque about point B. For
material points which endure deformation through
both half cycles, the Jacobian is

DG = DF|z3,yBR¢DFIIA,yA :
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tau=15,e=.3

1.3

-1.3

Fig. 7. The spatial variation of the maximum eigenvalue
of the variational equation throughout the material for one
cycle of deformation with 7 = 1.5 and (a) e = 0.2, (b) e = 0.3,
(c) e = 0.4. There are ten contours ranging from 1 to 4.0 in
each plot.

Using DG, we can calculate the eigenvalues for any
material point. Figures 6 and 7 show the spatial
variation of the maximum eigenvalue of the varia-
tional map for a material point during one full cycle
of deformation.

Singular values might better describe the in-
stantaneous stretch. Either measure describes the
local behavior of an infinitesimal material element,
independent of its history of motion. The dynamics
are not involved. This is illustrated as follows.

We consider a variational equation about a tra-
jectory z, to be a linear map of the form

Upt1 = Apuy, (14)
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where A, = DG/z, . At each iteration n, the form
of A, changes. For linear invariant maps, we nor-
mally put the map in Jordan form by the change
of coordinates u = Tv, where the columns of T
are the generalized eigenvectors of A. For varia-
tional maps, the eigenvectors will change with n,
such that u, = T,v,. Applying this transforma-
tion to Eq. (14) yields vpt1 = Ty} 1AnTnVy. This
does not put the system into Jordan form. Hence,
the eigenvalues do not represent the dynamics lo-
cal to an orbit. An analogous argument applied to
flows leads to a similar conclusion.

Fig. 8. There is self similarity in the spatial structure of
the maximum eigenvalue of the variational equation for one
cycle of deformation with 7 = 3 and e = 0.3. (a) The entire
field of deformation is displayed with a resolution of 100 by
130 pixels. (b) The displayed region is = € [0.5, 0.7] and
y € [0.2,0.4]. (c) The displayed region is = € [0.58, 0.64]
and y € [0.26, 0.32]. Further zooming reproduces the same
pattern. The resolutions for (b) and (c) are both 100 by
100 pixels with ten contours spanning values from one to
approximately 10.9.

The local Lyapunov exponents measure the in-
stantaneous expansion and contraction of an in-
finitesimal spheroid during iterations of the map
[Nese, 1989; Eckhardt & Yao, 1993]. If, for exam-
ple, the direction of expansion at a particular iterate
is represented by the unit vector e,, then the lo-
cal Lyapunov exponent would be A, = log ||Anpe,]]|.
Thus, for maps, the local exponent A, will be less
than or equal to the logarithm of the maximum lo-
cal singular value. While the local Lyapunov expo-
nent is affected by the dynamical sequence of the
iterated map, the local eigenvalues omit correlation




effects of the history of motion. Local eigenvalues
indicate the local behavior about material points
chosen randomly at an instant in time.

With this physical interpretation in mind, we
examine the maximum eigenvalue throughout the
material. This provides another glimpse of the spa-
tial structure of the system. The local Lyapunov
exponents would actually be a better characteriza-
tion for mixing problems [Eckhardt & Yao, 1993],
but there are computational difficulties in finding
e for each material point. Other characterizations
for stretching have been performed by Muzzio
et al. [1991] and Muzzio et al. [1992], the lat-
ter applying multifractals and finite-time Lyapunov
exponents.

The maximum of the two magnitudes of eigen-
values for the entire deformation field can be repre-
sented by a contour plot. Figures 6 and 7 show ex-
amples of the spatial structure. Each figure has ten
contours and a resolution of square pixels defined
such that there are 100 pixels along the z axis.

Figure 6 shows the effect of torque duration 7.
Intuitively, the maximum eigenvalue in the defor-
mation field increases as 7 increases. For e = 0.45,
Figs. 6(a)-6(c) show the cases of 7 = 1.5, 7 = 2.0,
and 7 = 3.0. The maximum eigenvalue magnitudes
for each case are 2.6, 5.8, and 10.9, respectively. For
the case of 7 = 2.5, the largest eigenvalue is 8.12. In
some cases, the maximum local eigenvalue is larger
than the square of that of the half-cycle map; this
is due to the composition of shearing effects. In
the middle of some of the contour plots it is easy
to detect what looks like an empty sea among hilly
islands. The “sea” corresponds to eigenvalues equal
to, or near, one.

Figure 7 shows the effect of the eccentricity e on
the e spatial distribution of the largest eigenvalue.
For 7 = 1.5, Figs. 7(a)-7(c) represent e = 0.2,e =
0.3, and e = 0.4 The maximum eigenvalue magni-
tude for each case is very close to 4.0. For the cases
of e = 0.1 and e = 0.5, the maximum eigenvalue
magnitudes are 4.0 and 3.96.

In summary, we see the influence of parameters
on the dynamically uncorrelated material behavior
and on the spatial distribution of this behavior. Ap-
parently, torque duration 7 is most significant in
creating large eigenvalues. Eccentricity has some
effect on the spatial distribution, but very little ef-
fect on the maximum magnitudes.

The contours in Figs. 6 and 7 are congested in
some areas. To obtain qualitative information, we
zoom into such a region and examine the structure.
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We choose the case of 7 = 3 and e = 0.3 since
it displays a good example of congested contours.
Figure 8(a) shows the spatial distribution of max-
imum eigenvalues of DG. Figure 8(b) zooms into
the region defined by = € [0.5, 0.7} and y € [0.2,0.4].
The result clarifies the edges of the congested
area in Fig. 8(a), but congested features remain.
Figure 8(c) zooms again on this congested area,
such that = € [0.58, 0.64] and y € [0.26, 0.32]. Its
structure is remarkably similar to that of Fig. 8(b).
Zooming further reproduces the same pattern.

The area of the zoom represents material points
which are mapped near the point B during the
first half cycle. Thus, during the second half cy-
cle, they experience the previously noted small-r
stretching characteristics: oscillating eigenvalues
with logarithmically varying wavelengths (as r
varies). In contrast to the fractal clustering quanti-
fied by Muzzio et al. [1992] in a chaotic mixing flow,
this self similarity is centered at a single location.

5. Conclusions

Under simplifying assumptions, the torsional defor-
mation of a planar, rigid, perfectly plastic material
slab is shown to result in a simple area-preserving
logarithmic map. Application of this deformation
history in a cyclic pattern, similar to the blink-
ing vortex model, shows that complex spatial de-
formation patterns can result in plastic materials.
The Poincaré maps show both quasiperiodic and
stochastic-looking behavior, while stretching and
folding of line elements presents evidence for a
horseshoe mechanism in the map. The spatial dis-
tribution of eigenvalues has self-similarity in its
structure. Maximum eigenvalues correlate with in-
dications that the torque time is a key player in mix-
ing. Application of this “chaotic mixing” of plastic
materials to more practical examples is under study
by the authors.
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