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Abstract

The concept and application of phase-space reconstructions are reviewed. Frac-
tional derivatives are then proposed for the purpose of reconstructing dynamics from a
single observed time history. A procedure is presented in which the fractional deriva-
tives of time series data are obtained in the frequency domain. The method is applied
to the Lorenz system. The ability of the method to unfold the data is assessed by the
method of global false nearest neighbors. The reconstructed data is used to compute
recurrences and correlation dimensions. The reconstruction is compared to the com-
monly used method of delays in order to assess the choice of reconstruction parameters,
and also the quality of results.

1 Introduction

When doing experiments with dynamical phenomena, it is not always possible to sense all
of the active states in the system. A phase space reconstruction can often be used to rescue
the experimenter in this situation.

A phase-space reconstruction is the extraction of the full dynamics of a system from a
small number of observables. The goal of a phase-space reconstruction is to take, typically,
a single sampled measurement history and view it in a higher-dimensional space, which can
somehow accommodate the dynamics that generated the signal. If successful, there is a one-
to-one relationship between data in the reconstructed phase space, and associated data in
the true state space. Loosely speaking, in this case the reconstruction is called an embedding.
The fully reconstructed state space (or the embedding) is useful in system characterization,
nonlinear prediction, and in estimating bounds on the size of the system [1,2].

One reconstruction idea has been to use derivatives of the sampled quantity [3,4]. This
idea might be motivated by the usage of displacement and velocity as states in oscillators.
Takens has proven that this method will produce embeddings, provided that the system
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is sufficiently smooth and noise free (see also Noakes [5]). However, real systems are not
noise-free. The successive derivatives of the observed state are prone to increasing noise
amplification as the order of the derivative increases.

By far the most common method of phase-space reconstruction is the method of delays
[3,4]. Details about the method of delays are presented shortly.

In this paper, we propose the usage of fractional derivatives for the purpose of phase-
space reconstructions of data from nonlinear dynamical systems.

In what follows, we briefly provide background on phase-space reconstructions. We
summarize the fractional derivative, and its application by using the fast Fourier transform
(FFT). We then outline the application of fractional derivatives to time-series data. The
fractional derivatives are applied to reconstruct the phase space in an example, and then
compared to the reconstruction obtained by the more common method of delays. The
correlation dimension and recurrence behavior are examined in the reconstruction data.
Conclusions are then drawn.

2 Background on Phase-Space Reconstructions

In this section, we review the methods for reconstructing the phase space from a single ob-
servable, and also other computations done for proper reconstructions of the phase space, and
characterizing the dynamics. First we look at details of the method of delays. Understanding
the method of delays provides some insight to what might be needed in a fractional-derivative
phase-space reconstruction.

2.1 The Method of Delays

The method of delays, introduced independently in references [3,4], is the most common
method for reconstructing the phase space. Suppose we have a measurement y which is
essentially a smooth function of the states x, i.e. y = f(x). Suppose further that the states
evolve in time ¢, and the measurement is sampled at a sampling interval At, generating a
series of quantities y,,, withn = 1,... M. According to the method of delays, we build vectors
Yn = (Uns Ynths - - - Ynt(dg—1)h), Where h is a delay index, and dg is the dimension of y,,. The
delay time is 7 = hAt. The pseudo vectorsy, can then be plotted in a dg-dimensional space.
The sequence of points y,, traces out a sampled curve in this pseudo phase space. This forms
the reconstructed phase space, in which the next stage of data analysis and modeling can be
pursued.

The method of delays can be intuitively justified by considering that the delay coordi-
nates represent a linear transformation from coordinates that represent finite differences in
time. Since mechanical systems have states which can be represented by displacements and
velocities, the choice of discretized derivatives as pseudo states seems like a natural one.
Incidentally, derivatives of the observable have also been considered for performing recon-
structions [3, 4], and while this idea does produce a pseudo phase space in theory, it has the
problem of noise amplification, and is not considered practical.

The method of delays has been justified for smooth systems by Takens’ embedding



theorem [3], which states that, if basic hypotheses are satisfied, applying the method of
delays to an observable produces a trajectory in the reconstructed or pseudo phase space
which is a topological embedding of the trajectory in the real phase space. The important
meaning of this is that the limit set in the real space is mapped injectively to the reconstructed
phase space.

Among the basic hypotheses is that the embedding dimension must be known. That is,
when the method of delays is performed, the choice of dg must be large enough to accommo-
date the dynamics. Furthermore, as it turns out, because of the presence of uncertainty and
noise in the system, the choice of the delay index or delay time 7 must be carefully made.
We briefly discuss these issues next.

2.2 Choosing the Delay Time

In an ideal, noise-free setting, almost any time delay can be used in the phase-space recon-
struction. However, the presence of noise makes the choice of the delay time an important
one. If the delay is too small, then the elements of the pseudo vectors become too similar,
such that the pseudo vectors tend to lie on a diagonal in the space, and the reconstruction
does not produce much information. On the other hand, since the reconstruction is often
performed on a system with complicated dynamics, which often involve sensitive dependence
on initial conditions, the usage of an excessively large time delay leads to pseudo vectors
whose elements are largely uncorrelated, yielding a random-looking pseudo phase space. In
this case, much information is lost, and the structure of the dynamics is difficult to ascertain.

Various methods have been proposed to choose an appropriate delay time [2]. One school
of thought is to choose 7 based on the autocorrelation of the sampled observable. Intuitively,
when the autocorrelation is minimal, the correlation between the observable and its delay
is minimal, indicating that this delay, used to define coordinate axes, will lead to optimally
independent axes. The problem is that autocorrelation is a linear operation, and we are
generally dealing with nonlinear data. And while this method is often successful, there are
some examples in which it generates unsatisfactory results [6, 7].

The preferred alternative is the average mutual information [8]. This is computed by
plotting y,., against y,, and dividing this two-dimensional delay space into square bins.
Denoting A as the set corresponding to one axis, and B as the set corresponding to the
other, we can then set event a to represent a bin in A, and event b to represent a bin in B.
Then P4(a) is the probability of a in A, which is the number of data in bin a divided by
the total number of data, and Pg(b) is defined likewise. Psp(a,b) is the joint probability,
which equals the number of data that are in a and also in b, divided by the total number of
data. In other words, the bins form a grid on the two-dimensional plot. Bin a is a vertical
strip, and bin b is a horizontal strip. Pa(a) is obtained by counting data in the vertical and
horizontal strips, and Pag(a,b) is obtained by counting data in the intersection of the strips.
Given these probabilities, then

PAB(CL,b)
2 PA(G)PB(Z?)

The average mutual information is then obtained by averaging this quantity over all the bins.

Iag(a,b) =log



To find the best choice for a value of the delay index h, one computes the average mutual
information for a range of delay indices, and chooses the first minimum. This provides
coordinate axes that have minimal mutual information, and hence optimal independence,
without excessively large delays. Indeed, it is possible for the average mutual information
plot to show no local minimum, in which case the calculation can still provide a guide for
the choice. Furthermore, this approach is used to seek independence between two adjacent
reconstruction coordinates, vy, and y,p, while disregarding the independence between other
coordinates, y,, and y;p, 7 =2,...,dg — 1.

2.3 Determining the Embedding Dimension

The embedding dimension is the dimension of the reconstruction if it is an embedding. A
key property of the embedding is that the mapping from the real space to the pseudo space
is one-to-one. If trajectories cross each other in the pseudo space, it is not an embedding.

The method of false nearest neighbors (FNN) has been developed to search through the
data and identify the presense of trajectory crossings [1]. The idea is that if the embedding
dimension is too small, portions of the strange limit set will cross over itself. As an example,
suppose a warped closed curve in three dimensions is projected into two dimensions such
that it forms a figure—eight. The figure—eight has a crossing point. But when expanded back
into three dimensions, the curve can “unfold” and bypass this crossing point.

Thus, as the dimension of the reconstruction is increased, these false crossings unfold.
So if the nearest neighbor of a pseudo phase point reconstructed in dimension d suddenly
becomes far away when the reconstruction dimension is increased, then it will have been
considered a false nearest neighbor. In this work, a nearest neighbor is labeled “false” if
Ryi1/Rq > 15, where R, is the distance between the points in the d-dimensional reconstruc-
tion space. (There is a second FNN criterion for noisy data [1], which we need not apply
in this work.) When a dimension is reached in which there are essentially no false nearest
neighbors, then the appropriate embedding dimension is found.

This test can be applied after the appropriate choice of 7 has been made. Alternatively,
one can plot the number of false nearest neighbors versus 7 and look for a robust choice of
the embedding dimension dg. A healthy reconstruction usually has some robustness in the
determination of the embedding dimension dg under variations in other parameters, such as
the delay time.

2.4 Other Phase-Space Reconstructions

Distortions of the method of delays have been documented, for example by Potopov [10]
and Mindlin [11]. An inherent issue is that any point in the reconstructed phase space is
represented by a finite time interval, [t,¢ + (dg — 1)7], as opposed to an instant of time
in the true phase space. In contrast, the derivatives method of reconstructions establishes
reconstruction vectors that truly correspond to instants in time, but has noise amplification
problems. Stick-slip systems also cause problems in the method of delays [12] and the method
of derivatives. Although these methods were not proven for nonsmooth systems [3], needed
for a stick-slip process, it is possible for the methods to be unknowingly applied.
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As an alternative to delay and derivative phase-space reconstructions, a mix of integrals
and derivatives has been suggested [13,14]. The presence of an integral can introduce a
drift in the reconstruction. For example, a periodic orbit with a constant component in
the original space will not be periodic in the reconstructed space due to the integration of a
constant component in the periodic orbit. Hence the reconstructed phase space with a purely
integrated component is qualitatively different than the true phase space; it is generally not
one-to-one, and hence cannot be an embedding. Gilmore and Lefranc [14] suggest removing
the mean of the signal to avoid such secular behavior. High-pass filtering might also be an
option [15].

In this work, we propose the reconstruction the phase space by using fractional deriva-
tives. We will show evidence, in an example, that fractional derivatives produce independent
coordinates in the reconstructed phase space. Also, a fractional derivative can be incre-
mented several times before accumulating a large order to the total derivative. Thus, it is
possible to obtain a moderate number of dimensions in the reconstructed phase spaces of
low-noise systems without excessive amplification of the noise. The fractional derivative is
easy to apply to time series. Points in the resulting reconstruction space are seemingly rep-
resented by time instants as opposed to time intervals. However, those who have performed
numerical integrations of fractional-order differential equations know that the dynamical
history is involved (more on this later).

2.5 Characterizing the Data in the Reconstructed Phase Space

Since a properly reconstructed phase space qualitatively represents the dynamics of the true
phase space, the data analyst can perform all sorts of computations on the reconstructed data
to characterize the system in some meaningful way. For example, Lyapunov exponents and
fractal dimensions can be calculated or the recurrence behavior can be examined. Nonlinear
prediction methods or system identification can be applied. In low-dimensional cases, the
dynamic attracting set can be visualized by looking at the Poincaré section.

In this paper, we will look at recurrence behavior and correlation dimensions.

Recurrences are often used for extracting the unstable periodic orbits from a chaotic
attractor. The idea is, given a reconstruction, we look for near periodicities by examining
the distance between a point y, and its iterates y,ir. If ||[yn — Yask| < €, where € is
some prescribed small value, then the points are considered to be part of a nearly periodic
trajectory of period kh. For example, e might be taken as 0.005 times the span of the attractor
[16-18]. We can plot the number of recurrences versus k. In a smooth system, the recurrence
plot shows spikes at values of k corresponding to the periods of the unstable periodic orbits
that are visited. We can also look at the data for the span of indices for which a recurrence
takes place, i.e. on the interval of data that is considered to be approximately periodic. The
collection of unstable periodic orbits might be used for determining determinism, estimating
the fractal dimension [19] or Lyapunov exponents [16], or identifying system parameters
[20-23].

Fractal dimensions are sometimes used to estimate the dimension of the attracting set.
Common measures of dimensions are the limit capacity, information dimension, and cor-
relation dimension [24]. It is also possible for an entire spectrum of dimensions, or the
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multifractal spectrum [25], to be calculated [26]. We will apply correlation dimension calcu-
lations [27] in our example.
To compute the correlation dimension, we first calculate the correlation integral,

1] NN
Cr) = 3z 22 2 ulr = Ixi = x51), (1)
i£ j=1
where u is the heaviside (step) function (u(z) =0, z < 0, u(z) = 1, z > 0) and r is a specified
“ball” size. In other words, C'(r) is the number of pairs of data x; and x; with |x; —x;| <,
divided by N?2. Locally,
N
Cilr) = 5 S ulr — b = x,)),

N3
is the normalized (1/N) number of points x; that are r-close to the reference data x;. Then
C(r) is the mean of the C;(r). To ease the computational effort, it might be reasonable to
estimate the mean of the C;(r) by randomly selecting a subset of M (where M << N, but
is still a large number) reference points x; [28,29], which is how we do the computation in
this work.

Given C(r), the correlation dimension d. is obtained by presuming C(r) ~ r as r — 0.
Thus, log C(r) ~ d.logr. Since it is not feasible to take » — 0 for finite data sets, the idea
is to seek a linear scaling region for small log r in the log C'(r) versus log r plot, and take the
slope as the correlation dimension d..

Poincaré sections are basically cross-sections of the phase space. As continuous-time
trajectories pierce the Poincaré section, they define points on the Poincaré section. The
sequence of points are mapped on the Poincaré section according to the flow of the trajectories
in the full phase space. the dimension of the attractor in the full phase space is d, = 1+ d~,
where d!’ is the dimension in the Poincaré section.

In this paper, we will reconstruct a chaotic data set using the method of fractional
derivatives, and also using the method of delays and the true phase space for reference. We
will characterize the dynamics using the above measures, and compare the results for the
different phase spaces.

3 Fractional Derivatives

3.1 Background

Example applications of fractional derivatives include visco-elasticity models in oscillators
[30-32], flows through porous media [33], and the characterization of fractal functions [34]. In
the modeling examples, fractional derivatives appear as terms in the differential equations of
motion, or equivalently as fractional power terms in the denominator of a transfer function.

The Liouville-Riemann fractional derivative can be expressed for non-integer order a < 0

d*z(t) 1 t o 2(r)
d(t —to)® - I'(—a) /to (t — 7)ot dr, (2)

as

6



where t; suggests an initial condition, and plays a significant role in the integration process.
For a > 0, one can apply

dz(t)  d" 1 t x(T)
At —to)e  di"T(n —a) /t ( ar 3)

t — T)a—n—‘rl ’
for n > a [35]. Quite often, ¢, is taken to be zero.

Our interest is in applying the fractional derivative to time-series data. This will not have
been the first time for fractional differintegration of time series. The fractionally integrated
autoregressive moving average (ARFIMA) has been applied as a time-series modeling and
forcasting tool for long-memory processes, for example econometrics and hydrology [36, 37].
In our work, we perform fractional differentiation of the time series by first applying the
Fourier transform, and then computing the fractal derivative in the frequency domain [38].

The fractional derivative is difficult to interpret in a spatial domain (in comparison to the
familiar slope and curvature) and in the time domain (in comparison to velocity, acceleration,
and jerk). However, in the frequency domain, we interpret derivatives of dynamic signals
based on a scaling of the amplitudes and phase shifts of the signal’s sinusoidal elements. The
n'* derivative of a complex exponential of frequency w is represented by a multiplication by
(iw)™. That is, the amplitude is scaled by w”, and the phase is shifted by n7/2. Accordingly,
the fractional derivative of a sinusoid or complex exponential is easily interpreted as a scaling
of the amplitude by a fractional power of the frequency, and a shifting of the phase by a
fraction of 7/2.

As such, in contrast to application of the fractional derivative according to the definition
in equation (2), in the domain of the independent variable, the fractional derivative d®xz(t)/dt*
of fractional order a of a signal z(t) is easily computed in the frequency domain by taking
the Fourier transform of the signal, multiplying by (iw)®, and finally transforming back to
the time domain [38]. It turns out that this representation is consistent with the fractional
derivative of an exponential function [35], d*z(t)/d(t —to)®, as tg — —o0, meaning at steady
state. Since our reconstructions are to be performed on chaotic data which are taken to be
at steady state, this process is reasonable.

The “generalized derivative” is similar to the fractional derivative applied in the fre-
quency domain. In the case of the generalized derivative, the signal is multiplied by i|w|* in
the frequency domain [14]. For the case of a = 0, the generalized derivative corresponds to
the Hilbert transform. Gilmore and Lefranc [14] applied the generalized derivative to data
from a dynamical system and used it to make plots resembling a two-dimensional phase
portrait.

We apply the fractional derivative in the frequency domain for the purpose of phase-
space reconstruction, using the fast Fourier transform (FFT) for computational feasability.
Since the FFT has some approximation built in, we will refer to the computed fractional
derivative of a signal z(t) as D®z(t), in lieu of the true fractional derivative d®z(t)/dt®.

3.2 Leakage

When using the FFT, its problems are inherited. A problem that takes our attention is
leakage. Leakage results because the FFT algorithm looks at an infinitely long time series
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built by repeating the finite time series data ad infinitum. Splicing the finite time record to
itself produces discontinuities at the splices, which distort the frequency domain information
through Gibbs phenomenon.

In the time domain, leakage is apparent as transient Nyquist-frequency oscillations near
the endpoints of the signal after applying the FFT to the time record, manipulating in
the frequency domain, and then inverting the FFT. Examples of this effect can be seen in
references [14, 15].

A common way to deal with leakage in linear signal analysis is to multiply the time record
by a windowing function, which typically smoothly changes from zero to one, and back to
zero by the end of the time record [39]. In this paper we use the terminology “windowing”
to describe the use of a windowing function. Windowing is an excellent treatment in linear
signal analysis, when the interest is in frequency content. However, in nonlinear signal
analyses, such as the phase space reconstruction, the aim is to preserve the geometry of the
dynamics. Windowing distorts the geometry. For example, chaotic data continually visits
unstable periodic orbits (UPOs). If we choose to extract the UPOs, a windowed time record
will yield distorted UPOs. For instance, how two different UPOs are linked may not be
preserved if the time record is windowed.

Therefore, we do not use windowing to treat leakage here. Instead, since the distortion
due to leakage is at the endpoints of the time series, affecting a small percentage of the
data, we will truncate the time record to remove the effect of leakage. To determine where
to truncate the data, we obtain #(t) from finite differences, perhaps with low-pass filtering
if necessary, and Dz(t) by using the frequency domain. For each time sample, we examine
§(tn) = |Dx(t,) — &(t,)|. We retain Dz(t,,) for the interior range of samples where 6(,,) < e,
for some acceptable tolerance e. An example of this truncation error will be shown later.
We assume that the leakage error is of similar magnitude for other fractional derivatives.

Another possible approach is to select a subset of the time series data for which the
beginning and end points are nearly the same [14]. Perhaps a combined approach would be
most robust.

The use of fractional derivatives for reconstructing the phase space is discussed next.

3.3 Phase-Space Reconstruction

The proposed protocol for using fractional derivatives to obtain pseudo phase coordinates
for phase space reconstructions is as follows.
First, we have some computations that need be performed once:

1. Generate sampled time series data x(t,) with a constant sampling rate.
2. Use the FFT of z(t,) to obtain the data X (w,) in the frequency domain.

3. Evaluate the post FFT leakage error by computing 6(t,) = |Dx(t,) — &(t,)|, where
Dzx(t,) is obtained from the inverse FFT of iw, X (w,) and @(t,) is obtained by finite
differences.

4. Find the interior range of samples for which §(¢,,) < € to guide the truncation of the
fractal derivative signals.



We then perform the following computations for each pseudo coordinate D™%x(t), m =
1,2,...,d — 1, of the reconstructed phase space:

1. In the frequency domain, compute D"*X,, = (iw,)"* X,
2. Invert the FFT to obtain ¢,,,(t,) = D™x(t,)

3. Retain the §,,4(t,) for the interior range of samples for which 6(¢,,) < € (based on step
4 above).

4. We then normalize each axis of the data, such that yma(t,) = Jma(tn)/Rm, where R, =
max,, (Yma(tn)) — Miny, (Yma(t,)) is the span of the unnormalized coordinate ().
This normalization is for the benefit of the time series analysis metric characterization
methods that involve finding data with small “balls.”

Then the d-dimensional reconstructed phase space vectors have the form

Yo = [QO(tn)a U1 (tn)7 y?(tn)a <. 7yd—1(tn)]
o x(ty) D(t,) D*x(t,) D@=Dag(¢,)
= | Ry R, '~ Ry 7 Ry )

The value of a is a reconstruction parameter analogous to the delay index in the method
of delays. Parameter a can be chosen with the help of an average-mutual-information com-
putation between x(t,) and D%z(t,). In this work we do not seek a minimum average mutual
information, but a balance between a low average mutual information, and a large derivative
order a(d — 1). The value of d = dg can then be determined [1,9].

In this paper, we do not prove that y, is an embedding. However, in the next section,
we perform phase space reconstructions on an example. We compare fractional-derivative
reconstructions with delay reconstructions for reference. We will compute the embedding
dimension dg, the correlation dimension, and the recurrence behavior, and compare the
results between the fractional derivative and delay reconstructions. It may be that these
quantities have not yet been computed in an embedding not created by the method of delays
[14]. Our example involves low-noise numerical data. The method has also been applied to
“clean” experimental data [40]. Dealing with higher levels of noise will be a topic of future
study.

4 Example: The Lorenz System

The equations of motion of the Lorenz system [41] are

oy — ),
= rex—y-—2xz, (4)
z = xy— bz,

where 0 = 10,7 = 28, and b = 8/3. The sampling time interval was At = 0.01 for the
numerical solution. We obtained 57344 samples in the observable z.
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Figure 1: The normalized error between the velocities calculated in the frequency domain
and by finite differences, |Dx — &|/(max &), for the first 150 points of the numerical solution.

The phase space is to be reconstructed by means of fractional derivatives, and, for
assessment of the reconstruction parameters, by means of the delay method for comparison.

In performing the fractional derivative reconstruction, we computed the fractional deriva-
tives, and then removed the leakage effects by truncating 150 sampled points off of each end
of the data. The remaining signal had a maximum truncation error of |Dz — &| < 2, where
the maximum value of || was about 161. The values of |Dxz — &| decreased monotonically
(with an insignificant oscillation) as the index moved away from the endpoints toward the
middle of the time record (Figure 1).

4.0.1 Average Mutual Information

For determining a “good” choice of derivative order a, we looked at the average mutual
information I between x and D% as a function of a. The first minimum in the plot indicates
that optimally independent coordinates for x and D*z correspond to the case of a slightly less
than 0.8, for which I ~ 0.35 (Figure 2, left graph). This is interesting, since, for oscillators,
we might have expected a = 1 such that the most independent coordinates are analogous
to displacement and velocity (or current and voltage). A wide range of values of a provide
lower average mutual information with z than the pair (z, D%x).

In order to obtain several reconstruction coordinates without letting the average mutual
information get “large,” and without letting the total order of the derivative get “large”
so that the noise amplification is reasonable, we have chosen fractional derivative orders at
multiples of a = 2/7 for illustration of its use for phase-space reconstructions. For a = 2/7
the average mutual information is slightly above one.
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Figure 2: The left graph shows the average mutual information between the coordinates x
and D%z as a function of a for the Lorenz system. The right plot shows the average mutual
information between delay coordinates z, and z,., as a function of h.
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a=2/7 a=4/7

Figure 3: Plots of D*z versus x for various values of a for the Lorenz system.

The values of mutual information surrounding the minimum for the fractional derivative
pairs are quite competitive with those surrounding the local minimum in the method of
delays (Figure 2, right-hand graph). The first local minimum for delay coordinates occurs
at h = 19, with a value of about I = 0.8. For a delay of h = 13, the I between the delay
pair is similar to the I between the fractional derivative pair with a = 2/7.

4.0.2 Reconstruction of the Phase Space

Figure 3 shows pseudo phase portraits involving the first three fractional derivatives of the
signal x from the Lorenz system plotted against x, and also the plot of x vs. D?x.

The delay-space plots of the Lorenz system are shown in Figure 4. Close examination
shows that, while the delay-space trajectories tend to locally define a sheet-like attracting
set, i.e. a set of dimension that is close to two, the fractal-derivative-space trajectories seem
less confined to a nearly two-dimensional sheet.

We look more closely at the fractional-derivative reconstructions of the Lorenz variable
x with derivative orders of multiples of a = 2/7, in comparison with delay reconstructions
with delays of h = 13, such that x,, and x4, are similarly independent as x(t) and D*z(t),
according to Figure 2.
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Figure 4: Plots of x,., versus z,, for various values of h for the Lorenz system.
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For fractional-derivative reconstructions of the Lorenz variable x with orders of multiples
of a = 2/7, the numbers of false nearest neighbors were 56695, 35416, 260, 0, 0, 0, 0, and 0,
for reconstruction dimensions of one through eight. Since there are no FNNs at dimension
four and above, we would be inclined to choose dr = 4 as the reconstruction dimension.

For the case of delay reconstructions with h = 13, for which the average mutual infor-
mation matched that of the fractional derivative pair with @ = 2/7, the numbers of false
nearest neighbors were 56853, 4184, 0, 0, 0, 0, 0, and 0 for reconstruction dimensions of one
through eight. Since there are no false nearest neighbors at dimension three or above, we
can choose an embedding dimension dg = 3 to fully unfold the data.

Thus, the fractional derivative method with increments of @ = 2/7 did not unfold the
data quite as efficiently as the method of delays with h = 13. However, the unfolding of
the data is similar, being in the range of the expected reconstruction dimension, and is thus
considered to be effective.

4.0.3 Characterization of the Data

Recurrence plots (Figure 5) indicate the numbers of recurrences at various values of delay
indices. The plots show that the five-dimensional fractal derivative space and the true phase
space produce qualitatively similar recurrence behavior for the same response data, in terms
of the widths and locations of the recurrence bands. The true phase space reveals more
recurrences for the period two and period three unstable periodic orbits. When a recurrence
is found in both spaces, it occurs at nearly the same index. Hence, the fractional-derivative
leads to little distortion in the temporal location of recurrences.

Finally, we computed the correlation dimension, d., by computing the correlation integral
C(r) for various ball sizes, r, based on 1000 randomly chosen reference points in the data
(but the same reference indices for each reconstruction).

The correlation dimensions were d. = 1.89 for the true phase space, d. = 2.52 for the
fractional-derivative phase space, and d. = 2.01 for the delay reconstruction. The fractal
dimension (limit capacity) of this system is known to be slightly above two, and the corre-
lation dimension is a lower bound to the limit capacity [24,25]. The large deviation of the
correlation dimension for the fractional derivative is consistent with the previous observation
that the reconstructed trajectories look more tangled, and less sheet-like, in the fractional
derivative space.

To further investigate what is going on here, we looked at the Poincaré sections con-
structed by plotting two of the phase-variable values at the instant the true z variable crossed
upward through the value of 25 (about which there are oscillations in the z variable). The
Poincaré sections are shown in Figure 6.

The cross section of the attractor in the (z, Dz, z) space is nearly confined to a line. In
fact, if we were to zoom in on the line, we would see a dense layering of Poincaré section
points. However, as the order a of the derivative deviates from a = 1, the dense layering
is disrupted. The case of a = 4/7, the furthest from a = 1 of those plotted, shows the
most deviation from the densely layered image. It is unknown whether this is a topologically
equivalent expansion of the layering, or a more serious distortion of the geometry. The cases
of a =6/7 and a = 8/7 show slight expansion (note the scales of the plots are also expanded
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Figure 5: The number of recurrences versus the delay index for of data from the Lorenz
system. The solid line shows the recurrence plot from the fractional derivative reconstruction,
and the dotted line shows the recurrence plot from the true phase space.

compared to the case of a = 1.)

Some comments are needed. The fractional derivative, when computed in the frequency
domain by using the FFT, involves a multiplication by (iw)®. In comparison to the case of
a = 1, the simple derivative, the case of 0 < a < 1 more heavily weighs the low frequency
content of the signal, and the case of a > 1 more heavily weighs the high-frequency content
of the signal. For the case of 0 < a < 1, added emphasis on the low frequency components
“slows down” the effect of the derivative.

Let us imagine, for example, a saturated sine wave, x4(t), which is constant over the
time intervals of saturation. The simple derivative Z4(t) will have zero values over the time
intervals of saturation. The trivial case of the derivative D®z4(t) where a = 0 will have
constant values over the intervals of saturation. It turns out that over a continuous change
in values of a from zero to one, there is a continuous change from having constant to zero
values over the intervals of saturation. In the intervals of saturation, D%z,(t) is neither zero
nor constant, but changing in time. A plot of the fractional derivatives of a square wave,
shown in Oldham and Spanier [35], also exhibits this effect. From this perspective, it might
seem that dynamics are added to the signal. However, for a new state to be added, the
reconstructed coordinate, say ¢, should have additional dynamics, such that D¢ = f(x, ¢).
However, the fractional derivative with a > 0 would add a zero (to the transfer function of
a linear system) rather than a pole, and apparently preserve the number of dynamic states.
This issue needs further investigation.

Furthermore, in tests of isolated segments of the Lorenz response data, we find that,
as calculated with the FFT, the fractional derivative at an instant is dependent on the
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Figure 6: Poincaré sections of D*(z) versus x for various values of a for the Lorenz system.
The points were generated as the true state variable z crossed upward through the value 25.
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past and future history of the signal. The future dependence makes the operation non
causal, perhaps a property of the frequency-domain computation, which is acceptable for
post processing. Past history dependence is not surprising since the definition equation
(2) involves an integral. This history dependence puts in jeopardy the previously asserted
advantage of instantaneity in time. The history dependence could also affect the locations
of extracted unstable periodic orbits. Should the same unstable periodic orbit be visited
twice, but surrounded by completely different trajectories each time, is it possible that the
location of the extracted periodic orbit might vary with the surrounding history. This also
needs investigation.

5 Conclusion

We have proposed the use of fractional derivatives as a means of reconstructing the phase
space of low-dimensional nonlinear dynamical systems. The idea is that the fractional deriva-
tive of a signal provides an otherwise independent signal. The order of the fractional deriva-
tive is a parameter in the reconstruction, analogous to the delay index in delay reconstruc-
tions. The fractional order was chosen rather qualitatively to minimize the total derivative
order, and hence the noise amplification, in the reconstruction coordinates, while examining
the average mutual information to keep the first coordinate pair sufficiently independent.

The fractional derivatives successfully unfolded the phase space in the Lorenz system,
based on the FNN test. The resulting embedding dimension was within one dimension of
the result for delay embeddings of the same data.

The search for unstable periodic orbits in the fractional-derivative pseudo phase space
and the true phase space produced similar recurrence plots. Indeed, the indices of commonly
recurrent trajectories were similar, indicating the same unstable periodic orbits are likely to
be extracted in either phase space.

The correlation dimensions were computed in the fractional derivative reconstruction,
the delay reconstruction, and the true phase space. It is rare for such characterizations to be
performed in a reconstruction other than a delay embedding [14]. The correlation dimension
in the fractional derivative reconstruction differed from the true phase space, although it was
still in a range that would represent qualitative similarity. There is some history dependence
in the fractional derivative. Whether this is detrimental for its use as a reconstruction tool
is not yet determined.

The fractional derivative method is simple, requiring simple Matlab code, for example.
In truth, the method of delays is more simple, and is expected to continue as the preferred
method. However, the fractional derivative method provides a valuable tool, and is likely
to find applications. For example, the fractional derivative history dependence should pro-
vide a “cure” for the phase space collapse seen in delay reconstructions of stick-slip signals
[12,15]. This should be studied. Generally, the reconstruction will be useful for analyses
(such as modeling, identification and prediction) of long time-series data that are facilitated
by unfolding the data in a higher-dimensional phase space. Applications are broad, and
could include engineering oscillations, biological dynamics, economics and climate studies.
It would be of interest to seek a mathematical proof of the ability of fractional derivative
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reconstructions to perform embeddings.
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