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ABSTRACT

A method of estimating damping parameters for multi-
degree-of-freedom vibration systems is outlined, involving a
balance of dissipated and supplied energies over a cycle of pe-
riodic vibration. The power is formulated as the inner product
between velocity and force terms, and integrated over a cycle.
Conservative terms (mass and stiffness) drop out of the formu-
lation. The displacement response and the input are measured,
and the damping coefficients are estimated without knowledge
of the mass and stiffness, which can be nonlinear, as illustrated
in one example. The identification equations are also obtained
with a modal reduction based on proper orthogonal decompo-
sition. The method can be applied with a harmonic motion
assumption, or by simple numerical integration. The method
is illustrated with linear and quadratic damping, in simulations
of a four degree-of-freedom system, and in a string with and
without noise.

1 Introduction

Accurate identification of macroscopic friction models is
important to design, analysis and control of vehicles, ma-
chines, machine-tool processes, and structures [1], as re-
sponses (e.g. friction-induced noise and chatter) are very sen-
sitive to the macroscopic damping model [2—7]. Stability crite-
ria, for example in aerodynamic flutter, are strongly dependent
on the system damping properties [8]. Identifying damping
can be done via damping-force measurement or damping co-
efficient estimation.
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Measurement of damping forces, such as dry friction, is
nontrivial [9], but can be done “directly” with the installation
of load cells and the measurement of the contact displacement
and velocity (a few examples are [10-12]). “Indirect” damping
force measurement [13] involves the measurement of displace-
ments, velocities and accelerations, and balancing of the differ-
ential equations of motion to solve for the damping forces.

Friction parameter estimation can be based on general
parametric identification schemes [14] applied to measured in-
put and output responses to estimate all unknown parameters.
On the other hand, damping parameters can be specifically es-
timated by making use of vibration properties.

For free vibration, there is the logarithmic decrement
for viscous damping [15, 16], and the constant decrement for
Coulomb damping [17], and combined damping [18-20].

Free vibration decrements are not applicable if the damp-
ing is strong enough to thwart sufficient oscillations. For
forced vibration, linear viscous friction is estimated from the
quality of resonance [21], or the complex motility response
[22]. These techniques can produce modal damping in multi-
degree-of-freedom (MDOF) systems. Recent methods for
forced nonlinear oscillators were done in the phase space
[23,24]. For the case of Coulomb damping only, the reso-
nance cannot be used, as the predicted resonant response is
unbounded.

A variety of methods have been proposed for estimating
parameters of combined damping sources [25-34]. Energy
dissipation was recently applied to estimate the structural loss
factor and Coulomb parameter in brush seals for turbomachin-
ery [35]. Tomlinson and Hibbert [36] used power dissipation
to estimate Coulomb and hysteretic damping coefficients, and
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Liang and Feeny [37] proposed a damping estimation method
based on the balance of energy. The idea is to compute the
energy input per cycle from input/output measurements, and
equate it with the formulated dissipated energy of the damp-
ing model to obtain estimation equations for unknown param-
eter values. The identification equations were consistent with
those derived from analytical solutions for the Coulomb-plus-
viscous case [32]. However the power of the energy balance
method lies in the potential application to systems for which
analytical solutions are complicated or even unavailable, such
as strongly nonlinear systems and MDOF systems. Further-
more, since conservative terms do not dissipate energy, the
method can be conducted without knowledge of the mass and
stiffness, or even the form of the stiffness, which is free to
be nonlinear. The principle should also extend to chaotic re-
sponses, analogously to the extension of harmonic balance pa-
rameter identification to chaotic responses [38], as the chaos
“visits” unstable periodic orbits.

The goal in this paper is to propose an extension of the
application of this parametric damping identification idea to
MDOF systems with periodic excitation and response. Tom-
linson and Hibbert [36] applied their energy balance method
to linear MDOF systems with known linear modes, but in the
context of determining the equivalent viscous damping. Here,
we address more general systems, which can include nonlinear
stiffness, and estimate linear and nonlinear damping parame-
ters. Furthermore, modal reduction concepts are united with
the energy balance to isolate damping parameters.

2 Energy Balancing for MDOF Systems

Multi-body holonomic system equations of motion can
be formulated from Lagrange’s equations. At a stage of the
derivation of Lagrange’s equations, we have

r[d (9T _IT oV _ |_

where, T and V are the kinetic and potential energies, ( is a
vector of generalized displacements, and Q,,. includes the non-
conservative forces. We separate the nonconservative forces
into dissipative and applied forces, i.e. —Qpe = Qg — Qu(1).
Then, if the system is scleronomous, upon integration of equa-
tion (1) over one cycle of a periodic response, the conservative
terms drop out, and we are left with

Wy = quTQd = quTQa =W,,

where W, represents the work of the dissipation forces and W,
is the work of the applied forces over one cycle of periodic re-
sponse. Recasting the integration variable from a displacement

differential to a time differential, the identification equation is

F 47 Quat = § 4" Quar. )

To make use of equations (2), the applied force Q,(¢) and
responses q should be measured. The dissipative force vector
Qg is formulated from the dissipation model, chosen by the
analyst to be linear in the p unknown damping coefficients,
that is in the form of p damping coefficients times respective
functions of displacements and velocities. Hence at least p
input-output measurement sets are needed.

2.1 Linear Structures with Nonlinear Damping

While the principles of equations (1)-(2) are straight for-
ward, implementation can get complicated. Thus we focus our
discussion on structural vibrations of the form

Mx + Cx + Kx +f(x,x) = #(1), (3)

where x is the displacement vector and #(¢) is the input vector.
The identification equations are formed by the inner product
of the velocity vector with the equation of motion. Integrating
over a period of oscillation, the conservative terms drop out,
and the nonconservative work terms are

Wy = f dq'Q, = f x! Cxdr + 7{ xTf(x)dt,
W, = 7{ dq"Qu = ?{ T #(1)dr.

2.2 Four-Mass Example

For illustration, we consider a chain of four equal masses
connected by equal linear springs, and linked to the ground on
both sides, with linear and nonlinear damping, such that M =1
is the (dimensionless) mass matrix, and the stiffness, nonlinear
damping, and excitation are

2-1 0 0 %11 0
s | -1 2—-1 O .. |XX|| .. _ 0
K=1 01 21 [ ®=d g [ FO=| o

0 0-1 2 X4|X4] acos ot

The linear damping is proportional to stiffness such that
C = ¢K, ¢ unknown, and the uniform quadratic damping has
an unknown constant d. The positions are to be measured dur-
ing a periodically excited periodic response, for four different
excitation levels a. The number of excitation levels was arbi-
trarily chosen with the aim of exceeding the number of param-
eters (two) to be identified, with the thought that redundancy
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Figure 1. Animated steady state vibration of the four mass system,
with nondimensional @ = 1, and with nondimensional axial displace-
ments plotted transversally. The mass deflections are connected with
lines for visualization of the instantaneous configurations. The masses
are indexed with labels 1 through 4 (mass locations). Mass label 5
indicates the right wall. Solid and dashed lines distinguish forward (up-
ward) and return strokes.

generally helps the least squares fit. (With the model matching
the data, little if any, redundancy is needed.)

We simulated responses with the values ¢ = 0.15 and d =
0.10. The integration step size was # = 0.1. The simulations
were run for 1000 steps to remove the transients, and then for
an additional 200 steps to record steady state responses.

In this example, we resonated the first mode (® = 0.618)
with input amplitudes a = 0.25, a = 0.5, a = 0.75, and a =
1. Figure 1 shows the animated displacement of the masses
through a cycle of vibration for excitation amplitude a = 1.0.
Figure 2 shows the displacement of mass 4 against the dis-
placement of mass 1. The loop in the plot indicates asyn-
chronicity, due to the nonlinear damping and the asymmetri-
cally applied excitation (on the forth mass). The effect is only
very slightly less pronounced with the lower excitation levels.

Nonetheless, applying a synchronous harmonic response
approximation, that is X = [x;,x,x3,x4]7 with x; = X; cos(r —
¢), where 0 is the mean phase lag of the masses with respect to
the excitation (a simple approximation motivated by the steady
state response of a linear system, but neglecting the variations
in phases, apparent in Fig. 2, caused by subdominant modes
and damping), we can evaluate the above integrals and express
the work terms, such that balancing W; = W, results in

8
2MOCA, + gmszd = maXysing, 4)
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Figure 2. Displacements of mass 4 versus mass 1 show the asyn-
chronicity of the steady state response. The loop in the plot indicates
asynchronicity.

where A. = X7 + X5 + X5 + X7 — X1 Xo — XoX3 — X3Xs, and
Ad=XP+X+X3+X;.

The steady state response amplitudes and phases were ap-
plied to equation (4), for which the least squares solution pro-
duced ¢, =0.1341 and dj, = 0.1216, which are in error by 11%
and 22%. The main source of error is in the synchronicity as-
sumption.

We repeated the parameter estimation without any har-
monic approximation. To this end, we express the balance
W, =W, as

7{ i Cxdr + f{ KTR(%)dr = 7{ < (1)dr. )

Equation (5) has embedded unknowns ¢ and d, and has the
form

co+dp =y, 6)

where, for this particular case of Candf, a= § (x% +)€% +
B4 X3 — qpky — Koz —daka)dt, B= (%P + [l + ]+
li4]3)dt, and y = § dxscos(or)dt. These integrals were per-
formed using the rectangular integration rule. With the same
four excitation amplitudes, we wrote four equations of the
form (6), and the least squares solution led to estimates c; =
0.1499 and d; = 0.1003, which have negligible errors.

Since the conservative terms drop out of the formula-
tion of the identification equations (2) and (5), we expect the
method to work in the presence of conservative nonlinearity.
To test this, a nonlinear spring was grounded to the second
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mass, incurring a force of x%. Simulated responses with the
same four excitation amplitudes were periodic but not purely
harmonic, and the estimated parameters were ¢; = 0.1496 and
d; = 0.1036. These improved to ¢; = 0.1499 and d; = 0.1009
when computed over four cycles, probably showing some sen-
sitivity to the incommensurate sampling rate.

If there were more unknown parameters, for example if
each dashpot had a different damping coefficient, or if there
were more damping mechanisms at work, then more steady-
state responses would be needed to produce more instances of
(6) (or equation (4)). These additional steady-state responses
could be obtained from more amplitudes of excitation, and/or
other resonances. Additional data-generated equations (6) in-
crease the redundancy for the least-squares solution. If there is
nonlinearity, for example in one of the damping laws, the mul-
tiple amplitudes will produce multiple independent responses.

Liang [39] and Liang [40] independently expanded on
[37] and used a coordinate-energy balance for estimating
damping in MDOF systems. In these methods, the stiffness
values were required, but an identification equation was ob-
tained for each degree-of-freedom. The current paper is a
follow-up to [41].

3 Modal Reduction for Larger Systems

We now combine the energy balance with modal reduc-
tion. This may be helpful when the number of sensors is less
than the degree of freedom, for example with “large” MDOF
structures or continuous systems.

The modal reduction will be based on proper orthogonal
decomposition (POD) [42]. Proper orthogonal modes (POMs)
that result from POD represent the principle spatial signal en-
ergy distributions in the data. The n POMs that contribute to
the significant energy (based on a prescribed criterion, such as
99.9% of the total energy) will be taken to capture the energy
dissipation of the system. The modal energy is indicated by the
proper orthogonal value (POV), which can also be interpreted
as the mean squared modal coordinate value. The high-degree-
of-freedom differential equation model will be projected onto
the n POMs, and energy input and dissipation will be deter-
mined as functions of the measured input and the parameters
and response measurements by means of this projection. The
use of modes for model reduction and parameter identification
has been widely done in other contexts (e.g. [43—49]).

We illustrate the formulation on linear structures, with
added nonlinear damping, of the form (3). Suppose the po-
sitions are measured during a periodically excited periodic re-
sponse, and the proper orthogonal modes are determined (from
the eigenvectors of R = XX /N, where the rows of X are the
N time samples of x). Note that the POMs do not equal the
linear normal modes, although they do converge to linear nor-
mal modes in some specific cases [50-53]. Letting U be the

proper orthogonal modal matrix, in which the columns are the
POMs, we write X = Uy , where y are the proper orthogonal
modal coordinates [54]. If the number of modes are chosen to
encompass a large percentage of the signal power (for example
99.9%), the approximate equality is rather good. Substituting
into equation (3) and premultiplying by U7 yields

UMUy + UT CUy + UTKUy + UT#(Uy, Uy) ~ UT#(z),
or
My +Cy+Ky+£(y,y) = r(t).
Thus, for the energy balance step,
y" (My +Cy + Ky +1(y.y)) = ¥ r(0).

This corresponds to the vector form of the more general
equation (1), with

_an = Qd_Qa = Cy—"f(y7Y) _r(t)'

Integrating over a cycle of periodic response, assuming for
now to have the same period as the driver (adjustments can
be made for subharmonic responses), and noting that the con-
servative part will have no net change in energy, we have

F37(Cy+ 1y~ f ey, ™

which is the identification equation, to which multiple in-
put/output measurements will be applied.

3.1 Four-Mass Example

First we return to simulations of the example in Section
2, with ¢ = 0.15 and d = 0.1, as the results will be directly
comparable. We resonated the system at the first mode (® =
0.618), let the transients die away, and saved four cycles of pe-
riodic data, whence we obtained the POMs, and kept a select
number of POMs for the proper orthogonal coordinate (POC)
approximation. We did this for four different input amplitudes
(a=1,a=0.75,a=0.5, and a = 0.25), for which dominant
POM of each response contained 96.96%, 97.54%, 98.14%,
and 98.80%, respectively, of the total signal energy, while the
second most dominant mode contained 3.04%, 2.46%, 1.86%,
and 1.20% of the total signal energy. As the excitation ampli-
tude decreases, the nonlinear damping contribution decreases,
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Figure 3. The first two proper orthogonal modes of the four-mass
response, to an excitation level @ = 1, normalized to unity and then
scaled by the root-mean-squared modal amplitude (square root of the
POV) .

and the distortion in the dominant POM from the associated
linear normal mode decreases, while the dominant POM be-
comes increasingly dominant. In all cases, the first two modes
together consist of more than 99.99% of the total signal energy.

For the case of a = 0.25, the dominant POM is [0.3659,
0.5957, 0.6035, 0.3834], which is sightly unsymmetric due to
unsymmetric forcing. The asymmetry in the dominant mode
slowly increases with a, and for the case of a = 1.0 the dom-
inant POM is [0.3601, 0.5897, 0.6059, 0.3943]. For the case
of a = 1.0, the dominant and secondary POMs are shown in
Figure 3.

Applying a synchronous harmonic approximation with a
single POM [41] led to ¢, = 0.1428 and dj, = 0.1145, off by
about 5% and 15%.

Using rectangular-rule numerical integrations of the pe-
riodic responses, equation (7) takes the form of equation (6),
with coefficients

co= 7{ y'UTCUyd:t, Pd = 7§ y UTR(Uy)dr,  (8)

y=§y" Uk, ©)

where the integrals are performed by numerical sums.

The term B was computed by determining the proper or-
thogonal modal coordinates y for each of retained POMs, ex-
pressing the original vector X in terms of the variable y, and
then evaluating the nonlinear damping vector f prior to the
matrix multiplications in the integrand. When we kept only

one POM, the identification results, with the same data, for
the numerically integrated coefficients, were ¢; = 0.1404 and
d; = 0.1138. Therefore, the quality was very similar to that
of the harmonic approximation. Here the error was induced
by truncating all but one mode. For nonlinear dynamics sig-
nal analyses, we tend to use a stricter percentage threshold for
omitting POMs, so this rough approximation is not surprising.

When we kept two POMs, the estimated damping coeffi-
cients were ¢y = 0.1499 and d, = 0.1003. In this case, the two
leading modes approximately represented the dynamics, and
were sufficient to accurately estimate the parameters.

In this basic example, we used “measurements” of all de-
grees of freedom to obtain the dominant POM, and then ap-
plied a reduced number of modal coordinates for the reduced-
order parameter estimation, even though the full-order estima-
tion is accessible and was done above. It shows that, if modal
information is available, then few modal coordinates may be
sufficient in estimating damping parameters. POD provides
valuable insight for assessing the number of required modes
based on modal energy content. The purpose of this example
was to probe the feasibility of reduced-order damping estima-
tion in systems for which it is not possible to measure all of the
degrees of freedom, such as a continuous structure, discussed
next.

3.2 Distributed-Parameter Systems

We stage the problem in terms of the situation for which
discrete position measurements are collected from a continu-
ous structure. From these discrete measurements, POMs will
be estimated and used as a basis for proper orthogonal modal
coordinates (POCs) [54]. We envision projecting the partial
differential equation model of the system to a few ordinary dif-
ferential equations (ODEs) in the POCs. Since the POMs are
discrete, the integrals normally associated with a modal pro-
jection are discretized by rectangular-rule spatial integration.
The conservative terms from the partial differential equation
(PDE) are assumed to drop out of the energy balance despite
numerical errors that may occur in this discretization, and the
damping and input terms are then kept for the energy balance.

As such, the PDE of a damped distributed medium of
length L is of the form

p.Z.+L()Z+CLcZ.+df(ZaZ.) :d(x,t), (10)

where z(x,1) is the deflection as a function of space x and time,
p is the mass per unit length, L, is a conservative linear opera-
tor, L. is a linear operator for linear damping, f is a nonlinear
damping term, ¢ and d are the damping coefficients for linear
and nonlinear damping, and a(x,¢) is the distributed the peri-
odic excitation. Assuming the system to be sensed at discrete
locations x;, i = 1,...,mg, we obtain a measured displacement
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vector z(¢), with elements z(x;,7). The ensemble matrix Z with
elements z(x;,;) is used for the POD to obtain the m, x m POM
matrix U, where m is the number of retained POMs.

Assuming each m; x 1 POM u to represent a discretized
“proper orthogonal modal function” u(x), we can consider a
modal projection of equation (10) by the truncated modal ex-
pansion z(x,#) ~ U(x)y(z), where U(x) is a 1 x m vector of the
m retained “proper orthogonal modal functions” that represent
a sufficient portion of the signal energy, and y is the m x 1
vector of POCs. So the PDE (10) can be written as

PUM)Y +LoU(x)y +cLU(x)y +df (Ux)y, U(x)y) ~ a(x,1).

Premultiplying by the m x 1 matrix U7 (x), and integrating over
the domain leads to

L L
| pUT U@y + [ U@L, U )y
0 0
L L
te / U7 (x)LU(x)dxi +d / U (%) £(U(x)y, Ux)§)dx
0 0

L
z/ U7 (x)a(x,t)dx,
0

which is an m x 1 vector equation.

For the energy balance, this equation is premultiplied by
the transpose of the m x 1 modal velocity vector, and integrated
over a period of the response. The conservative kinetic and
potential energy terms drop out, leaving the energy balance as

c 7{ v’ [ /0 : U’ (x)LcU(x)dx} ydt (11)
+d 74 ' { /0 U ) f(U(x)y,U(x)y)dx] di

~ f i [ /0 LUT(x)a'(x,t)dx} dr.

Since we only have discrete measurements and a discrete
POM matrix in place of the continuous 1 X m representation
U(x), the integrals are replaced with spatial sums. Approxi-
mating the integrals with rectangular integration, and discretiz-
ing the “proper orthogonal modal functions” U(x) with the
m; X m POM matrix U, we define

L
AjAx = UL UAx ~ / U™ (x)L U(x)dx. (12)
0

For the case of synchronous excitation, a(x,t) = s(x)a(r). Dis-
cretizing s(x) as an my X 1 vector s, we define

L
BAx = UlsAx ~ / U7 (x)dx. (13)
0

In the above expressions, L. is the matrix discretization of the
linear operator L.. (For example, if L, = d/dx, then L, would
be a finite-difference matrix operator, defined to be dimension-
ally correct.) Also Ax is the distance between sampled points,
which we will take to be uniform for this discussion. (In the
vibrations of two-dimensional media, Ax would be replaced by
the surface area associated with each measured location.)

The integral [ U7 (x) f(U(x)y, U(x)y)dx is more delicate.
The nonlinear function is evaluated at each discrete spatial
point x;, i = 1,...,my, such that f; = f(U(x;)y,U(x;)y). Then
a discrete my x 1 vector f is built from the elements f;. As such

AsAx = UT fAx ~ /0 U@ U@s)dx (14)

Thus A is m x m, and A, and B are m x 1. Inserting into
equation (11) and canceling the Ax term yields

c 7§ VA ydi +d f 7 Andt ~ % i"Ba(dr.  (15)

Finally, the integrals

a=f¥ A, B= 5 Asdr, y= § 3 Baar, (16)

are numerically evaluated, and the identification equation (15)
is

oc+Bd =vy. (17)

Values o, B and 1y are obtained for each of several periodic
steady-state responses, and unknowns ¢ and d are determined
by a least-squares solution. The sources of approximation in
equation (17) are the spatial discretization limited by the sen-
sor placement, the reduced order modeling based on the domi-
nant POMs, and the numerical integration of the identification
equation coefficients, affecting equations (12)-(9).

3.2.1 String Example Strings and cables are com-
mon components in real dynamics structures. Here we look at
the damped vibrations of a harmonically forced homogeneous
string of tension 7" with linear and quadratic viscous damping.
The partial differential equation of motion is

pi—T7" +cz+dz|z| = 8(x— Ly)acos wt, (18)

thatis, L, = —T, L. =1, f(z,2) =2
of the applied excitation.

z|, and L, is the location
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The string was simulated by a 4th-order Runge-Kutta pro-
cedure on the first ten linear normal modal coordinates. Us-
ing normalized modal functions, ¢;(x) = \/2/pLsin(jnx/L),
of the uniform undamped string, and defining modal coordi-
nates g;(t) such that z(x,#) = Y7, ¢;(¢)9,(x), the modal coor-
dinates obey

L
j+cdj+ 03, +d [ 0(0f (1)) dx = ab(L) cos(ar),

for j =1,2,...,10, where ®; = jn+/T/pL?. In the numer-
ical simulation, the nonlinear damping term in the modal-
coordinate ODEs was treated by discretizing the normalized
modal functions at eighteen equally spaced points xi, evalu-
ating f(z,z) = z|z| at the same x;, and numerically integrat-
ing spatially by the rectangular rule. The parameters were
T=1p=1,L=1,c=04,d=0.5,and L, =5/9. The un-
damped modal frequencies were jx, j = 1,2,...,10. The ex-
citation frequency was ® = T, at resonance with the first linear
mode. The integration step size was h = 0.1. The simulation
was run for 1000 steps to remove the transients, and then for
an additional 200 steps to record steady-state responses.

The modal coordinate data were mapped to physical dis-
placement data via the normalized modal functions. These
were sampled at eight evenly spaced locations on the string.
In this way we generated the data ensemble Z, as if there were
eight displacement sensors on the string. The POD was per-
formed on this ensemble, and the m dominant POMs were re-
tained for matrix U and the reduced order modeling (m = 1 and
m = 2). The quantities Aj,A; and B were computed accord-
ing to equations (12)-(14). In particular, from equation (14),
A, = UTf, where

f=(Uy)o|(Uy)) (19)

was used to approximate the discretization of f(z,z) = 2|2,
and where the symbol © is meant to represent an element-by-
element product between m x 1 vectors resulting in an m x 1
vector, like the °.*’ operation in Matlab.

We applied excitation levels a =4, a =8, a = 16, and a
= 32. As the amplitude increased, the dominant POM’s power
share descended from 99.1% to 95.3%, while the second mode
power share ascended from 0.9% to 4.6%. The total power of
the two dominant modes was a minimum of 99.96% (for the
case of a = 32). From this data, the single mode estimation
of the damping parameters was c; = 0.3032 and d; = 0.5354,
and the residuals of equation (17) were negatively biased. The
two mode estimation was ¢, = 0.4024 and dp = 0.4987, with
unbiased residuals.

Since there is no significant noise or modeling errors,
this result shows that error induced by the discretization and

displacement

sensor location

Figure 4. Animated steady state vibration of the nonlinearly damped
string, with nondimensional ¢ = 0.4, d = 0.5, and a = 32. The sen-
sor index numbers indicate the locations of sensed nondimensional dis-
placements on the string. These are plotted and connected with lines
to visualize the rest of the string. Sensor label 9 indicates the right wall.
Solid and dashed lines distinguish forward (upward) and return strokes.

modal displacement

sensor index

Figure 5. The first two proper orthogonal modes of the string re-
sponse, normalized to unity and then scaled by the root-mean-squared
modal amplitude (square root of the POV).

reduced-order-modeling effects. In the two-mode case, with
enough POMs to cover most of the signal energy (more than
99.96% here), the reduced-order-modeling effect is small.
The animated response is shown in Figure 4, and the first
two POMs, scaled by their relative root mean squared modal-
coordinate amplitudes, are shown in Figure 5.
Finally, we looked at the effects of sensor noise on the lat-
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ter example. After the numerical integration was completed,
and the displacements z(x;,7) were computed at the simulated
sensor sites on the string, a random noise ensemble was added
by using the Matlab function ‘rand’. This Matlab function pro-
duces random numbers uniformly distributed in the unit inter-
val. We scaled these random data to the interval between -1
and 1, and then by 273, The maximum response amplitude
along the string ranged from about 1.3 for the case of a =4 to
4.3 for the case of a = 32. The rms noise value was very close
to the theoretical value of 273 / /3 for the uniform, zero-mean
distribution. The maximum rms noise value represents about
2.4% of the maximum rms amplitude of the string for the case
of a = 32, and about 7.9% for the case of a = 4. The ratio
of the maximum noise value to vibration amplitude was larger
away from the midpoint.

The noisy displacement ensemble was used to find the
dominant POM and its associated POC. The dominant two
POMs ranged from 97.82% and 1.12% of the signal power,
at a =4, t0 95.21% and 4.65%, at a = 32, of the signal en-
ergy. The noisy POMs and POCs were applied to the reduced-
order identification equations (12) through (17). The result-
ing estimated damping coefficients were ¢; = 0.1964 and d, =
0.5479, for the single mode estimation, and ¢, = 0.3935 and
d» = 0.5007, for the two-mode estimation. The one-mode es-
timation was poorly affected by the noise, but the two-mode
estimation error was similar to that of the noise-free estima-
tions. With increased noise levels, once the second POM was
lost into the noise level, the results deteriorated to the quality
of the single mode approximation.

3.2.2 Speculation on More Complicated Sys-
tems The examples given here support the concept of the
method, and are representative of linear structures with simple
nonlinear damping and potentially large degree of freedom.
Problems can get more complicated in geometry or in higher
dimension. An approach may be to generate a finite-element
representation of a 1-D or 2-D distributed system. The finite-
element model will have many more degrees of freedom than
sensors. Thus, the system will need to be homogenized to
a system with displacement coordinates matching the sensor
configuration. The homogenized system will have the form of
equation (3). The discrete formulation will carry from there.

If working with a 2-D system with tractable geometry, the
approach of Section 3.2 can be adjusted, with modal function
matrix U(x,y), where here y is an additional spatial indepen-
dent variable. In the discretization of integrals, analogous to
equations (12) and (13), the discretization L of the differential
operator, and its compatibility with the modal matrices U, is
non trivial. It may be useful to cast these matrices as higher
order arrays, and use an appropriate matrix product to produce
scalar quantities in the end, or else to discretize into large set

of ordinary differential equations (for example by using finite
elements) which can then be reduced to form equations (8). In
an experimental setting, sensors such as accelerometers, laser
transducers [55], or strain gages [56] might be employed, and
processed to produce the displacement ensemble.

4 Conclusion

We have applied an energy balance method for estimating
damping parameters in multi-degree-of-freedom systems and
continuous systems with periodic excitation. The method in-
volves an inner product between velocity measurements and
force terms in the differential equations. Integrating this inner
product over a cycle of periodic response allows the conser-
vative terms to drop out. Hence the identification equations
are focused on energy dissipation and excitation terms, and
the damping can be estimated without knowledge of the mass
and stiffness. Indeed, the method should work for all conser-
vative nonlinear stiffnesses with periodic responses. The ap-
proach was supported in numerical examples with linear and
nonlinear stiffnesses. A harmonic approximation or a simple
rectangular-rule integration can be used. The latter takes less
effort and is more accurate.

The method can be combined with a modal reduction
scheme. Here, POD was chosen for energy balancing as it pro-
duces the optimal and dominant signal energy distributions.

We successfully applied the method to numerical simu-
lations of a four-degree-of-freedom system, which was then
compared with the fully sensed MDOF example, and a uni-
form string. Good results were obtained when the number
of modes (two in our examples with asymmetric loading) was
sufficient. The identification of the string with random sensor
noise was of similar accuracy as the noise-free case. High-
frequency noise should have small effects, as the algorithm in-
volves integration. Low-frequency noise could be more prob-
lematic.

The reduced-order examples suggest that the method may
be tractable for systems with fewer sensors than the number of
physical degrees of freedom. Future tasks will involve the fea-
sibility of the method on experiments, and more complicated
systems of more than one dimension.
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