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ABSTRACT
The kinematics of the transverse motion of a swimming fish

are analyzed using a complex modal decomposition. Cinemato-
graphic images of a swimming whiting (Gadus merlangus) were
obtained from the work of Sir James Gray (Journal of Experimen-
tal Biology, 1933). The position of the midline for each image
was determined, and used to produce planar positions of virtual
markers distributed along the midline of the fish. Transverse de-
flections of each virtual marker were then used for the complex
orthogonal decomposition of modes. This method was applied
to images of a whiting before and after amputation, in a Newto-
nian frame of reference and an “anterior-body-fixed” frame as
well. The fish motions were well represented by a single complex
mode, which was then used as a modal filter. The extracted mode
and modal coordinate were used to estimate the frequency, wave-
length, and wave speed. The amputated fish was compared to the
non-amputated fish, and the amount of traveling in the respective
waveforms was quantified. The dominant complex mode shape,
and the estimated modal frequency, were employed to reanimate
the fish motion.

1 Introduction
We study the kinematics of the swimming motion of a whit-

ing (Gadus merlangus or Merlangius merlangus) that was ex-
amined by Sir James Gray [1, 2]. The motion of a fish during
swimming is of interest for several reasons. Some species of fish
have ta natural ability to swim very efficiently. A greater under-
standing of their movement allows for better appreciation of fish
themselves, as well as valuable insight to a very efficient form of
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underwater locomotion. The work in this area can also be applied
to the development of modern technology, such as in biomimetic
robotic fish [3, 4, 5, 6, 7].

In this paper, we perform complex modal analysis to further
analyze and quantify the motion of the fish. The fish is seen as
an oscillating structure, and the many degrees of freedom are the
positions of points along the midline of the fish. The method
applied is a complex orthogonal decomposition [8], which is a
generalization of proper orthogonal decomposition [9]. The pur-
pose is to demonstrate how the analysis method can be applied
to fish motion data. In this example we look at a brief moment
of swimming of an individual fish, rather than assess an average
representation of swimming patterns of all whitings.

The contributions of this work are in the description of an-
imated fish swimming motion in terms of complex modes and
modal coordinates, and in providing an analysis tool for extract-
ing this modal information from images. This new perspective
enables a thorough and compact representation for fish kinemat-
ics.

1.1 Background on Fish Kinematics
Brief historical accounts [10, 11] mention early studies,

for example by Aristotle, who thought the fish propelled them-
selves with their pectoral (side) fins, and by Borelli, a disciple of
Galileo, who showed that the fish he studied could swim without
the pectoral fins and instead relied on motions of the tail. Perti-
nent interest in fish motion has emerged since the start of the 20th
century. Modern analyses began with Breder [12], who classified
body/caudal-fin swimming motions. The classifications of undu-
latory swimming still used today range from anguilliform, sub-
carangiform, carangiform, thunniform, and/or ostraciform swim-
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caudal finpectoral fin

Figure 1. An illustration of the whiting.

ming [11, 13, 14]. The subjective descriptions of these motions
vary progressively from large undulation in the anterior through
posterior for anguilliform, to subtle anterior motion in the sub-
carangiform motion, to soley caudal (tail) fin motion in the thun-
niform motion. Lindsey [11] provided a chart comparing motion
characteristics and body types associated with these classes of
motion. Not all authors have used the same classifications.

In the 1930s, Gray studied swimming fish in a set of impor-
tant papers on fish locomotion [1, 15, 2]. In his work [1, 2], he
used a series of photographs, and interpretive sketches, to portray
the movements of the bodies of various fish while swimming. In
[2], he focused on the role of the caudal fin in the whiting species.
The whiting is illustrated in Figure 1. Gray experimented with
the caudal fin’s role by amputating the caudal fin of one whiting
fish, and comparing the swimming motion with its prior non-
amputated (intact) motion. Gray had estimated that the caudal
fin accounts for 40% of the intact fish’s propulsion. However,
he observed that the amputated fish did not swim at a signifi-
cantly different speed than the intact fish, and suggested that the
amputated fish makes up for the lost caudal fin by changing its
movement pattern so that energy is transferred by movement in
the rest of its body.

Videler and Hess [16, 14] sensed the motions of mackeral
and saithe cinematographically, and processed the images into
time series data, which were then analyzed in a variety of ways.
They fit the motion at various locations, head to tail, on the body
to Fourier series, including both sine and cosine terms. We’ll
come back to this later. Gillis [17] studied moving images of
aquatic undulatory locomotion in fish and amphibians, in the
spirit of Gray’s work, and placed heavy emphasis on the effects
of the tail angles while swimming.

Studying the body motions during undulatory swimming is
important because the body kinematics are often used as input
to computational models of the fluid flow around the fish. Wolf-
gang et al. [18] used experimental flow-visualization techniques
to study the flow around a swimming giant danio, and com-
pared the experiments to a three-dimensional numerical model of

the flow velocity field based on prescribed motions of the mid-
line. Borazjani and Sotiropoulos, in a series of papers, mod-
eled a virtual carangiform mackeral [19], and an anguilliform
lamprey [20], each case numerically tethered at constant flow
velocity, based on an incompressible Newtonian fluid modeled
with the Navier Stokes equations and solved by a hybrid Carte-
sian/immersed boundary method. Next they studied the effects
of body shape and motion type [21]. In these studies, the im-
posed kinematics were quantified using a midline displacement
function h(x, t) = a(x)sin(kx−ωt), which describes a traveling
wave with wave speed c = ω/k and spatially dependent wave
amplitude a(x), where x is the position along the length of the
fish, head to tail, k is the wave number (2π over wavelength),
and ω is the oscillation frequency. In the anguilliform case, a(x)
was fit to an exponential function matching the data from Tytell
and Lauder [22] based on American eels, and the wave number
k was set based on the value used for a robotic lamprey [4]. In
the carangiform case, the wave amplitude a(x) was expressed as
a quadratic fit to the amplitude observations of Videler and Hess
[16], with a wavelength based on studies by Videler and Wardle
[23].

1.2 Complex Modal Decomposition
The method we use to analyze the motion of the fish is the

complex orthogonal decomposition (COD), developed for struc-
tures [8] and since applied to the movements of worms [24]
and waves in beams [25]. COD is a generalization of the well
known proper orthogonal decomposition (POD). POD, similar
to singular value decomposition (SVD), and principal compo-
nents analysis (PCA), is a tool for extracting modes that opti-
mize the signal energy distribution in a set of measured time se-
ries. It has been used to characterize spatial coherence in turbu-
lence and structures [9, 26, 27], the dimension of the dynamics
[26, 28, 29], empirical modes for reduced order models [30, 31],
and in system identification [32, 33]. POD, SVD, and PCA have
been compared for structural applications [34]. In specific cir-
cumstances, the POD produces the normal modes of a structure
[35, 36, 37, 38]. POD is particularly useful if extracting standing
wave components, but is less suited for decomposing nonstand-
ing wave components. The COD leads to complex modes that
can be used to describe non-standing and traveling waves.

SVD has been used to study the fluid wake of a fish [39]. In
contrast, our work focuses on the body. Both COD and SVD are
able to dissect the motion into modes, and indicate a measure of
energy associated with the modes.

The application of COD involves solving the eigenvalue
problem Rw = λw, where R is a complex “correlation matrix”
built from time history measurements of a structure, in this ap-
plication, the transverse displacement measurements along the
body of the fish. The eigenvectors w of R are called “complex
orthogonal modes” (COMs), and indicate mode shapes that rep-
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resent the characteristic movement of the fish. The eigenvalues,
λ, which are the “complex orthogonal values” (COVs), indicate
the mean squared amplitude of modal coordinates. The largest
COV corresponds to the dominant waveform of the swimming
fish. Using the results of COD, we will then be able to calculate
other important information of the swimming mechanics of the
fish, such as frequency and wave number (or wavelength). Other
geometric properties of the mode could also be quantified, such
as the amplitude profile, and the tail angle of the fish as it swims
through time, a quantity that Gillis [17] focused on.

In this paper, following Gray [2], we analyze the movement
of an intact and an amputated fish. Image processing is first ap-
plied to images from Gray’s 1933 paper [2]. Transverse deflec-
tions of the midline of the fish are determined and become the
subject of this analysis. Indeed, Gray’s results of more than 75
years ago still contain information that becomes accessible as
new analysis techniques are developed.

2 Methods
Gray’s papers [1, 2] incorporated photos of multiple species

of fish as they swam through time. For this study, we focused
on the photos of the movement of the whiting, before and af-
ter amputation [2]. The analysis in this work involved image
processing to convert Gray’s photographs of swimming fish into
displacement data of the midline of the fish. The COD was then
applied to the transverse displacement data. In this section, we
discuss our process for obtaining transverse deflection data, and
then the decomposition analysis.

2.1 Image Processing
The whiting images were taken every 0.05 seconds [1], and

were placed over 3-inch (7.62 cm) square grids so that the various
positions of the fish could be easily compared. Inspection of the
photos shows that the intact fish was about 12 inches (30.48 cm)
in length, while the amputated fish was about 10.5 (26.7 cm)
inches long.

The photos of the fish were scanned from Gray’s paper [2] at
a resolution of 300 pixels per inch (118 pixels per cm). Individ-
ual fish images were created with a common background, based
on the grid in the original images, to provide a fixed coordinate
system. Approximate midlines of the bodies of all individual fish
images were created manually with Adobe Illustrator (Figure 2).
This manual approach seemed to produce cleaner transverse dis-
placement data than did our attempt to use programmed image
processing methods. It is expected that small errors incurred at
this step will be modally filtered by the COD [24]. The mid-
lines were then saved as black-and-white images. Representing
each fish image, each computer-generated midline was loaded
into a MATLAB program. This program assigned each pixel of
the midlines a value corresponding to black or white in an array.
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Figure 3: The blue lines are several examples of the midlines we created for 

each fish image. We later isolated the midlines and made them black and 

white to represent the fish in the MATLAB program. 

(a)

(b)

Figure 2. A sample of midlines superposed onto fish images obtained
from Gray [2]. (a) Prior to tail amputation. (b) After amputation.

Each column and row of the image array represented an x̂ coor-
dinate and a ŷ coordinate. The program recognized the x̂ and ŷ
coordinates of the midline pixels. The length of the midline was
determined, and then the x̂ and ŷ coordinates of m equally spaced
virtual markers were established along the midline. The idea of
using virtual markers on images of an organism follows work on
the motion studies of nematodes [40, 41]. The intact whiting was
tagged with m = 49 virtual markers, while the amputated whiting
had m = 43 virtual markers, such that the virtual markers were
spaced by approximately 0.25 inches (6.35 mm) from head to
tail.

A set of virtual marker locations was assembled for each fish
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image, thereby producing x̂ and ŷ time histories for each virtual
marker. In the computations, the fish images were essentially ori-
ented with a horizontal fish axis (a 90-degree counter-clockwise
rotation of the images shown in the figures), and so the x̂ co-
ordinate information is referred to as ‘axial,’ and ŷ coordinate
information is referred to as ‘transverse.’ The positions of the
virtual markers were then used to monitor the fish’s movements
as it swam.

Gray’s set of photographs of the intact whiting represented
slightly more than a full cycle. Close inspection of these images
suggested that the fish spent about the first half cycle swimming
nearly straight forward. During the second half cycle, the right
pectoral fin flipped forward and pulled back while the heading
veered slightly to the left. Our aim is to quantify its straight
forward locomotion pattern through one cycle. Henceforth we
incorporated the first half cycle, assumed symmetry, and regen-
erated the second half cycle, thereby obtaining a single cycle of
dominantly straight forward locomotion. From further inspec-
tion and trial decompositions, we determined that six images (we
used the first six snapshots) best approximated a half cycle, such
that n = 12 for a full cycle.

Gray’s photographs of the amputated whiting depicted
slightly more than a half cycle of motion. Assuming symmetry
between two half cycles of motion, we reconstructed the second
half cycle to create a full cycle of motion. We used the data from
images two through eleven, such that the half cycle included ten
data, and thereby n = 20 for a full cycle of amputated fish mo-
tion.

We completed both motion cycles by taking the images of
the first half cycle of motion, and duplicating them by flipping
them about the neutral axis of swimming. As such, the second
half cycle was a mirror image of the first half cycle. If the trans-
verse deflection data were flipped about an arbitrary axis, the
oscillatory motion of the virtual markers would undergo jumps
at the half cycle instants. To prevent this distortion, the neutral
axis of swimming was determined by finding the mean of the
marker positions at the first and seventh time samples (for the in-
tact swimmer). If the sampling is nearly commensurate with the
oscillation period, the seventh sample would represent the start
of the second half cycle, and would serve as the cyclic oppo-
site of the first sample, regardless of the phase of the oscillation.
Thus, a marker’s neutral position was approximated as the mean
of the first and seventh time samples (for the intact fish). The
neutral axis values of each virtual marker was subtracted from
its half-cycle time series, so that the transverse data neutral axis
was translated approximately to y = 0, and then the data was re-
flected about the new neutral x axis to complete the cycle. (An-
other option for determining the neutral axis would be to fit a
line to the means of the half cycle endpoints. In this case, the vir-
tual marker neutral axis points had a very small variation with a
trend, instead of a random distribution, and so the marker means
themselves were used.) The neutral axis was a constant axis, and

therefore the resulting full cycle of transverse motion remained
in a fixed Newtonian (x,y) frame.

A superposition of one cycle of samples of the fish markers,
after the treatments above, is shown in the upper half of Figure
3 (a) for the intact fish, and Figure 4 (a) for the amputated fish.
The lower half of Figure 3 shows the transverse displacements
of the odd virtual markers of the intact fish as functions of time.
The large oscillations of tail motion and the smaller amplitude
oscillations of markers on the body are apparent, as are the rela-
tive phases of oscillation, which show increasing lag toward the
tail.

Drawings by Gray [2] rendered from his photographs show
body movements relative to the anterior of the fish body. To
draw comparisons between our results and Gray’s observations,
we also prepared transverse deflections relative to the fish’s an-
terior. The fish is clearly not rigid, so this body-fixed deflection
was estimated. Noting that the flexure of the anterior of the body
was small, we fit a straight line to the first 20 markers in both
the intact and amputated motions. The flexural deflections trans-
verse to the “anterior-body-fixed” axis were then estimated with
an assumption that the body angle was small.

2.2 Complex Modal Decomposition
A one-dimensional COD was applied solely to the trans-

verse data of the fish. To apply COD, we first needed to con-
vert the sampled real transverse oscillations y(t) into complex
analytic signals z(t). We did this by the half-spectrum inversion
method, in which the fast Fourier tranform (FFT) is computed
and multiplied by two, the negative frequencies are nullified, and
the inverse FFT is applied [42, 8]. The complex analytic sig-
nals can also be obtained by using the Hilbert transform [42, 8].
The z(t) vector, whose elements represent values for each virtual
marker, when sampled through time, comprises the m× n com-
plex ensemble matrix Z for transverse motion. The ith row of Z
represents the time history of the ith virtual marker, and the jth
column is the jth time sample. The m×m complex “correlation”
matrix was then constructed as R = ZZ̄T /n, where the overbar
indicates complex conjugation. Matrix R is Hermitian, so the
eigenvalues (COVs) λi are real and the eigenvectors (COMs) wi
are orthogonal (unitary), that is w̄T

i wi = 1 for two of the same
normalized eigenvectors, and w̄T

i wi = 0 for two different eigen-
vectors [8]. The rank of R is bounded by the minimum of n and
m, which in our case is n. As such, at most, n meaningful modes
can be expected. Indeed, fewer than n meaningful modes are ex-
pected, as many modes tend to have insignificant participation
and are noise dominated. Since our fish undergoes a single cycle
of motion, we expect a mode corresponding to the fundamen-
tal frequency of undulation, with higher modes corresponding to
harmonics, most of which will be small noisy contributions.

Once the COMs, wi, are obtained, we can look at the motion
associated with these modes. The premise is that the total motion
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is a sum of modal motions (e.g. see [43]), such that, in ensem-
ble form, Z = WQ, where the W is the complex “modal matrix”
whose columns are the dimensionless normalized modal vectors
w j, and the rows of Q are samplings of the complex “modal co-
ordinates.” Then, this complex modal coordinate ensemble is

Q = W−1Z = W̄T Z.

Ensemble matrices Z and Q both have units of length. Reduced
modal motion can be constructed as Zr = WrQr, where Wr =
[w1, . . . ,wr], is m×r, r < m, and the rows of Qr are samplings of
the associated modal coordinates q j(t), j = 1, . . . ,r. Then r× n
matrix Qr = W̄T

r Z, and hence

Zr = WrW̄T
r Z (1)

is the m×n modally reduced motion ensemble. If a small number
of modes are “active”, then Zr ≈ Z. This process can be used as
a filter to “purify” the response based on the deterministic modal
activity. The modal filter is not perfect, because noise will also
infiltrate the dominant modal coordinates. But the modal filter
can be effective.

It may be useful to sketch an interpretation of a complex
modal motion. The harmonic motion in a complex mode z1(t) =
eαtu, where z1 is a vector of complex analytic particle positions,
t is time, α = γ + ωi, and u = c + di is a complex mode, with
γ,ω,c and d being real scalars and vectors, can be expressed in
real form (for example by combining with its complex conjugate,
z̄1(t)) as

y1(t) = eγt [cos(ωt)c− sin(ωt)d]. (2)

Thus a complex mode induces an oscillation with a continual
cyclic transition between the shapes c and d. The relative sizes
and degree of independence of c and d dictate the “amounts” of
standing and traveling in the wave.

Indeed, the work of Videler and Hess [16, 14] on the kine-
matics of saithe and mackeral was founded on a similar concept,
without the terminology “complex modes.” Videler and Hess ex-
pressed the motion in a Fourier series comprised of discretiza-
tions of associated functions c j(x) and d j(x), which play the role
of real and imaginary part vectors c and d, as coefficients of time
varying harmonic terms cos( jωt) and sin( jωt) for a given point
x along the midline. In their work, the elements of vectors c
and d were estimated from measurement Fourier coefficients and
splines for up to three odd harmonics. The COD presented here
is a method of efficiently packaging a similar estimation using
complex modal vectors which result from an eigenvalue prob-
lem.

The non-dimensional nonsynchronicity index, or “traveling
index” for mixed traveling waves, quantifies the independence
between the real and imaginary parts c and d of a COM as the
reciprocal of their relative condition number. A traveling index
value of zero indicates no independence between the real and
imaginary vectors, thus a standing wave, and a traveling index
value of 1 represents complete independence between the two
vectors, meaning a “fully” traveling wave [8].

Furthermore, we can dissect the COM vector as w = ws +
wt , where ws is a purely standing addend, and wt is a purely
traveling (or nonsynchronous) addend. Then ws = cs + ids and
wt = ct + idt . For example, if ‖c‖ ≥ ‖d‖, then the standing ad-
dend of d is the vector addend that is parallel to c, such that
ds = d · ecec, where ec = c/‖c‖ is the unit vector in the direction
of c. Then the traveling vector addend of d is dt = d−ds, which
is the part that is normal to c. The traveling addend of c is the
piece of c of the same size as dt , such that ct = ‖dt‖ec. Finally,
the standing part of cs = c− ct . Then the modal motion

Zr = wQ1 = wsQ1 +wtQ1 = Zs +Zt

is now separated into standing and traveling parts. (This break-
down is not unique, and there may be a way to optimize it.)

The eigenvalues, λ, of R produce mean squared amplitudes,
in units of length squared, of the modal coordinates. Examina-
tion of the λ j can indicate how many modes are active and sig-
nificant. Since w̄T

j w j = 1, the average of the mean amplitude
squared of the markers on the fish is λ j/m. Thus λ j/m provides
an estimate of the mean modal amplitude squared of deflection
along the midline of the fish (see also [24, 25]). The eigenvalues
can also be used as indicators of the modal “signal energy.”

COD can be performed with the goal of isolating a single
mode of interest, and then representing the mode by the real and
imaginary parts of the extracted complex mode, quantifying the
motion parameters based on the complex mode and modal co-
ordinate, enabling visualization and computation of additional
quantities of interest, and “purifying” or isolating the motion in
terms of the extracted mode. This is the aim of the current study.
Another goal of COD can be to extract multiple modes and study
properties of the modal spectrum, which can be a topic of future
study for fish movement.

3 Results
We applied the image processing, data analysis, and COD,

as discussed above, to both the intact and amputated fish in New-
tonian and anterior-body-fixed frames. This section shows re-
sults of the COVs, COMs, and further analysis including the use
of the modal coordinates.
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Figure 3. Intact fish transverse displacements. The top shows snap-
shots of all the midlines of the intact whiting through one full cycle (from
two half cycles). Each color (on-line version) represents a different snap-
shot of the midline. The bottom shows time traces of the odd virtual mark-
ers. Column (a), after image processing, and (b) using only the dominant
mode acquired after COD.
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Figure 4. (a) Snapshots of all the midlines of the amputated whiting
through one full cycle (from two half cycles) after image processing. Each
color (on-line version) represents a different snapshot of the midline. (b)
Representations of the midlines using only the dominant mode acquired
after COD.

3.1 Newtonian Frame
The COVs were used to establish modal dominance. For the

intact whiting fish, the primary COV had a value of 7.98 in2, and
the next highest values were 0.111 in2 and 0.0077 in2. The rest
of the COVs were below 10−14 in2. As such, the primary mode
dominated with 98.5 % of the signal energy. The scaled λ j/m
indicates a mean squared amplitude of 0.163 in2 on average per
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Figure 5. (a) Represents the dominant COM of the intact whiting in the
complex plane. The endpoint close to the origin represents the head. (b)
The real (solid line) and imaginary (dashed line) parts of the dominant
COM, plotted against the fish midline.

marker, or a root mean squared amplitude of about 0.404 in (1.03
cm) on average per marker. The dominant swimming mode may
contain effects of the fish’s small deviation from steady swim-
ming, and errors of the digitization of the photographic images.
If it is part of a nonlinear mode, the second mode may include
higher-order information about the mode. It may also contain
effects of the fish’s small deviation from steady swimming, and
errors of the digitization of the photographic images.

The COVs for the amputated whiting were 13.01, 0.128,
0.0229, 0.00677, and 0.00336 in2, and smaller. Once again, the
dominant eigenvalues suggest that the amputated-fish motion can
be well approximated by one mode, as the dominant mode had
98.8% of the signal energy. The dominant mode suggests a root
mean squared amplitude of 0.550 in (1.40 cm) on average per
marker.

The eigenvector (COM) associated with the greatest eigen-
value (COV) corresponds to the shape of the dominant complex
mode. For the intact fish, the dominant COM, w1, in the com-
plex plane, and also as both the real and imaginary parts of the
complex mode, are plotted in Figure 5. The traveling (or nonsyn-
chronicity) index of the dominant mode for the intact whiting fish
was 0.5205, which indicates significant, but not pure, traveling.

The first modal coordinate of the intact fish was extracted as
Q1 = w̄T

1 Z and is plotted in Figure 6 in the complex plane and
as an oscillation via its real part. The complex modal coordinate
goes through nearly a single period, as the next sample would
come close to the starting point (and be part of the next cycle).
This examination of the modal coordinate for various values of
n helped determine n = 12 as a nearly complete cycle of oscilla-
tion.

Applying the modal coordinate according to equation (1)
produces the single-mode motion shown in Figure 3 (b). Com-
parison with Figure 3 (a) shows how noise from the raw motion
is removed from the modally filtered motions. The modally fil-
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Figure 6. (a) The modal coordinate of the intact fish in the complex
plane. (b) The real part of the modal coordinate versus time.
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Figure 7. (a) The dominant COM of the amputated whiting in the com-
plex plane. The lower endpoint represents the head. (b) The real and
imaginary parts of the dominant COM plotted against the fish midline.

tered transverse displacement histories of the odd virtual markers
results in a smoother motion in comparison with the raw marker-
displacement histories of Figure 3 (a).

The dominant complex mode of the amputated whiting is
shown in Figure 7. Applying the modal coordinate according to
equation (1) produced the single mode motion shown in Figure 4
(b). Again, comparison with the raw motions in Figure 4 (a) sug-
gests that the motions are dominantly of a single mode, and that
small noise from the raw motions is removed from the modally
filtered motions. The traveling index was 0.5209. The index sug-
gests a similar amount of nonsynchronicity, which we take to be
traveling, in the movements of both the intact and amputated fish
in the Newtonian frame. We will discuss this later.

The first modal coordinate of the amputated fish is plotted
in Figure 8 in the complex plane and as an oscillation via its real
part. Again, the complex modal coordinate goes through nearly
a single period, as the next sample would come close to the start-
ing point. This examination of the modal coordinate for vari-
ous values of n helped determine how many images to include
in the complete half cycle. In comparison with the intact fish,
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Figure 8. (a) The modal coordinate of the amputated fish in the complex
plane. (b) The real part of the modal coordinate versus time.

the amputated fish modal coordinate shows a more sawtoothed
waveform in the plot of the real part versus time (Figure 8 (b)).

We estimated the frequency, wave number, and wavelength,
from the primary COM and modal coordinate. The frequency,
f , was estimated from the mean whirl rate of the dominant
modal coordinate in the complex plane (Figure 6 (a)). The
mean frequency through the full cycle for the intact whiting was
f = 1.6462 cycles per second. This compares closely to the
frequency of the nearly one-period time record of 1/(12∆t) =
1.6667 Hz.

Wave speed c can be estimated from estimates of frequency
and wavelength L, as c = L f . The wavelength can be obtained
from estimate of the wave number via k = 2π/L. Calculating the
wave number was a delicate issue. The spatial waveforms are
not harmonic and may not make a full cycle across the length of
the fish. Particularly, that of the amputated fish seems to display
only about a half cycle across the length of the fish. Inspection of
the spacing of zero crossings of the real and imaginary parts of
the intact whiting’s complex mode suggests that the wavelength
varies in space. Inspection of the real and imaginary parts of the
amputated whiting’s complex mode suggests that the two parts
have different wavelengths. These features make it difficult to
estimate the wavelength from the peak-to-peak characteristic of
an oscillatory waveform, and points us toward estimating the lo-
cal wave number from spatial local whirling rates as done in [24].
One whirl corresponds to a wavelength.

Estimating wavelength, if to be considered in relation to
wave speed, may make more sense for the traveling part of the
wave. Traveling and standing addends were separated and reani-
mated as Zt = wtQ1 and Zs = wsQ1 (in ensemble form), and are
shown in Figure 9 for the intact whiting. To the casual eye, the
“traveling” addend in Figure 9 (a) does not seem to have a trav-
eling advantage over the full modal oscillation shown in Figure
3 (b), but its traveling (nonsynchronicity) index of one is about
double that of the full modal oscillation. The standing addend in
Figure 9 (b) is clearly standing. The sum of these addends pro-
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Figure 9. The separated traveling and standing parts of the fish motion.
The superposed snapshots of (a) the traveling part of the primary modal
motion of the intact whiting, and (b) the standing part of the primary modal
motion.
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Figure 10. The local wavelength of the traveling part of the primary mode
at each point along the midline of (a) the intact fish, (b) the amputated fish.

duces the motion in Figure 3 (b). The distribution of the local
wavelength is shown in Figure 10 for the traveling addend.

We sought wave number estimations of the normal swim-
ming motions, and found that the estimated wave number was not
uniform. In the tail area, where we expect most of the thrust, the
wavelength fluctuates around about 10 in/cyc (25 cm/cyc). The
wave speed is then about 16 in/sec, well above mean observed
speed of the fish (5.2 in/sec) for this interval of its swimming.

The mean frequency from the whirl rate of the amputated
fish’s complex modal coordinate was 0.9809 cyc/sec, which is
consistent with the frequency of 1.0 Hz that would be associ-
ated with a 20-image cycle. The separated traveling and stand-
ing aspects of the motion are shown in Figure 11. Wavelengths
obtained from the full complex mode and from the traveling ad-
dend (Figure 10), calculated in the same way as for the intact fish,
show large variability across the length of the fish. The mean
full complex wavelength, which due to its coarseness may not
be highly relevant for relating to the propulsion of the fish, was
30 in/cycle, while that of the traveling addend was 35 in/cycle,
corresponding to mean wave speeds of about 30 and 35 in/sec.
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Figure 11. The separated traveling and standing parts of the amputated
fish motion. (a) The reanimated traveling part of the primary modal mo-
tion, and (b) the reanimated standing part of the primary modal motion.

3.2 Anterior-Body-Fixed Frame
We also looked at decompositions from data in the “anterior-

body-fixed” reference frame. The real and imaginary parts of the
primary mode shapes of the intact and amputated fish are shown
in Figure 12. The traveling index of the intact fish’s primary
mode in the body fixed frame was 0.483, while that of the am-
putated fish was 0.0463, suggesting that, relative to the anterior
of the body, the intact fish produces much more traveling in the
waveform through its body than does the amputated fish. The
highly standing nature of the primary mode of the amputated
fish is also apparent in the Figure, wherein the imaginary part
is nearly zero. Modulation of the mode, then, is dominated by
modulation of the real part.

The single-mode motions are shown in Figure 13 as a super-
position of the deflections transverse to the body-fixed axis in the
upper graphs, and time histories of these transverse deflections of
the odd virtual markers in the lower graph. The propagation of a
traveling wave is much more apparent in the intact fish than the
amputated fish, both in the superposed transverse deflections and
in the posterior marker histories.

4 Discussion
We saw that the estimated wavelength varies across the axis

of the fish. Indeed, from Euler-Bernoulli beam theory, the wave-
length is expected to be a function of frequency, dependent on
beam parameters such as the Young’s modulus, E, area moment
of inertia, I, and mass density [44]. The fish is inhomogeneous,
such that the values of I and E (should it be defined) would not
be uniform. Thus, for a fish forced at a given frequency, it would
not be unreasonable to produce an inhomogeneous wavelength.
The roughly estimated wave speeds well exceeded the swimming
speed.

Previous works on hydrodynamical modeling have used fish
motion profiles with uniform wavelength and wave speed and an
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Figure 12. (a) The real and imaginary parts of the primary mode of the
deflections transverse to the anterior-body-fixed axis. (a) Intact fish, (b)
amputated fish.
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Figure 13. (a) The single mode transverse deflections in a anterior-body-
fixed frame. The top figures are superposed snapshots, and the bottom
figures are odd marker histories, for the (a) intact fish, (b) amputated fish.

experimentally observed amplitude a(x) as a good first approxi-
mation, but the option of using complex modal oscillations may
help in refinement of the hydrodynamical modeling. For this pur-
pose, the motion can be reanimated using a complex exponen-
tial with the estimated frequency, modulating the complex mode
shape, according to y(t) = Re(Aei2πωt), where A is the square
root of the COV, and ω is the identified modal frequency. A sim-
ulated transverse deflection is shown in Figure 14 for both the
intact and amputated fish. In this way, modal motions can be sim-
ulated indefinitely, at a time step of choice. Small motion axial
effects can be easily incorporated by integrated foreshortening
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Figure 14. (a) The single mode reanimated motion, based on a complex
exponential modulation of the extracted dominant mode at the frequency
defined by the mean whirl rate of the complex modal coordinate. (a) Intact
fish, (b) amputated fish.

[24] of a nearly inextensible fish, or by doing two-dimensional
decompositions.

Gray made interesting observations from photos of the am-
putated swimmer. The absence of the caudal fin, according to
Gray, did not inhibit the fish from swimming effectively, even
though the motion was observed to be quite different. The in-
tact fish swam at about 5.2 inches per second (about one half
length per second), while the amputated fish swam at about 4.6
inches per second. Gray made the subjective comment that he
saw “very little evidence of a transmitted wave along the muscu-
lar tail.” Gray’s sketch of the animated motion of the amputated
fish supports this comment, as the sketch shows that the oscil-
lation of the tail, relative to the anterior half of the body drawn
fixed, visually indicates a standing wave. Our computations of
the primary mode shape, and its traveling index, in the anterior-
body-fixed frame also quantify and support Gray’s comments,
as do the visual single-mode features of Figure 13. While the
amputated fish did not produce the transmitted wave along the
muscular tail, it produced a transmitted wavy motion relative to
a fixed frame, in which the traveling index is significant, and the
motion has significant traveling and standing addends. Indeed,
Gray believed that the amputated animal generated thrust from
the interaction of its body with the water as a result of its move-
ment relative to a fixed frame. The whiting fish has a full set of
dorsal and ventral fins (Figure 1), and any action of these fins
during the swimming motion has not been isolated from Gray’s
images, nor referenced in Gray’s paper.

Gray concluded that mechanical action of the water and cau-
dal fin helps realize the traveling wave in the intact fish. We
might speculate that while the caudal fin in the intact fish con-
tributes thrust in the swimming direction of the non-amputated
fish, it may act as a nonproportional damping element for the
transverse deflection of the fish, and thereby mechanically con-
tribute to the complex nature of the mode. It may be worth
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considering that a strong swimming fish such as a carangiform
swimmer may resonate the mode shape of its body in interac-
tion with the water when swimming. Exploiting resonance may
allow the fish to achieve significant oscillation amplitudes with
minimal effort, and thereby play a role in how the fish can swim
efficiently.

Decompositions can be made under other variations in data
was processing. When the transverse component of the fish
centroid was removed from each frame, the modal motion (not
shown) resembled that of Borazjani and Sotiropoulos [19] more
closely.

Much of the interpretation of our results is dependent on the
accuracy of the transverse deflections we obtained from the im-
ages and the conditions of Gray’s work. For example, the single
cycle of data from Gray [2], as it was noted by Videler [14],
were obtained when the pectoral fins were extended, indicating
that the fish was not swimming in its most efficient manner. Al-
though limited data were used, the usefulness and feasibility of
the approach can be seen. For this cycle of a given swimmer,
a single mode was sufficient to represent the dominant charac-
teristics of the transverse deflection of the midline. But we were
not able to quantify long-term average swimming behavior of the
fish. E. g., we do not capture modal characteristics during tran-
sient swimming, such as burst swimming or start up, turning, and
breaking. Even with steady swimming, it would still be benefi-
cial to examine large data sets. The computational tool is easily
feasible for much larger time records, such as those in references
[24, 25].

5 Conclusion
This work demonstrated the application of a modern vibra-

tion analysis tool to the photographic images of a swimming fish
by Gray, thereby expanding on his studies of fish movement. We
processed Gray’s images to obtain transverse deflections of the
midline of the fish, and then conducted a complex modal decom-
position to quantify the motion pattern.

The decomposition produced a complex modal vector whose
real and imaginary vector parts contain information on the mixed
standing and traveling wave characteristics. The motion was
dominated by a single mode. Measurement noise and minor fluc-
tuations were “modally filtered” and the single-mode motion was
examined. The frequency of oscillation was cross checked us-
ing the complex modal coordinate. The complex mode and fre-
quency can be used to reanimate the motion indefinitely at any
time step. Results suggest a wavelength that varies with the loca-
tion along the axis of the fish, which is not surprising if the fish
is considered with reference to a non-uniform slender beam.

Quantifying the mechanics of the swimming motion serves
multiple purposes. It gives us a better understanding of the mo-
tion of a fish as it swims, which is of value for the understand-
ing of efficient water borne motion, application to biomimetic

robotic locomotion, and for the knowledge and appreciation of
fish themselves. The kinematics are important as input to fluid
mechanics analyses. Perhaps the methods here can be applied as
input in future refinements of hydrodynamical models.

In this work, new information was extracted from old images
collected by Gray in the 1930s. Computations also quantified
and supported several of Gray’s insights. The work demonstrates
a method that can be added to the toolbox for quantifying fish
kinematic parameters. It would be interesting, and feasible, to
apply the method to longer time series data of transverse midline
deflections during steady or unsteady swimming. Quantification
of average steady behavior can be applied to classification of the
types of swimming motion and its variation among species, or
even individuals.
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