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Abstract

A modal decomposition strategy based on state-variable ensembles is formulated. A nonsymmet-
ric, generalized eigenvalue problem is constructed. The data-based eigenvalue problem is related to the
generalized eigenvalue problem associated with free-vibration solutions of the state-variable formulation
of linear multi-degree-of-freedom systems. For linear free-response data, the inverse-transpose of the
eigenvector matrix converges to the state-variable modal eigenvectors, and the eigenvalues of the non-
symmetric eigenvalue problem approximate those of the state-variable model. As such, the eigenvalues
lead to estimates of frequencies and modal damping. The interpretation holds for linear systems with
multi-modal free responses, whether damping is large or small, modal or nonmodal, and without the
need of input data.

Keywords: state-variable modal decomposition, proper orthogonal decomposition, modal analysis, complex
modes, frequency estimation, damping estimation.

1 Introduction

This paper presents a method of decomposing free-response ensemble data into modal compo-
nents, while enabling frequency, damping, and mode-shape estimation for generally damped
linear multi-degree-of-freedom systems. The basic idea is a generalization of proper orthog-
onal decomposition (POD) [1–3], with similarity also to smooth orthogonal decomposition
(SOD) [4] and complex orthogonal decomposition (COD) [5]. Below, the application of these
methods to modal analysis is reviewed, and the niche of the new method is staged.

Proper orthogonal decomposition is now a standard tool that has been applied to turbu-
lence, structures, and many other types of systems. POD produces modes that optimize the
signal energy distribution in a set of measured time series. POD has been applied, for ex-
ample, to characterize spatial coherence in turbulence and structures [1–3, 6–9], to evaluate
the dimension of the dynamics [3, 6–8, 10], to detect modal interactions [11, 12], to produce
empirical modes for reduced order models [13–19], and in system identification [20–23]. The
POD is similar to Karhunen-Loeve decomposition, principle components analysis, or singular
value decomposition. All of these tools have been compared for structural applications [24].
The similar biorthogonal decomposition has also been applied to fluids and plasmas [25, 26].

POD is easily applied to discrete systems, or systems with discrete measurements xi(tj),
where i = 1, . . . ,M are the sensor indices, and j = 1, . . . , N are the time sample indices.
An ensemble matrix is formed as XT = [x1, . . . ,xM ], where the vectors xi have elements of
time samples xi(tj). So each row of X is a sampled history of one sensor on the structure.
Then the matrix R = XXT /N is formed. If the means of the signals are all zero, then R is
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a covariance matrix. Otherwise, we will refer to it as a correlation matrix, and the method
can still be applied. The eigenvectors of R are the proper orthogonal modes (POMs), and
the eigenvalues are the proper orthogonal values.

If the mass distribution is uniform, the POD produces the normal modes of a structure
[27–30], including 2-D structures [31]. If the mass distribution is not uniform, but known,
or if the stiffness matrix is known, the POD can be weighted to produce the normal modes
[27]. POD can be used for modal analysis if the damping is light, and if the system is
either impulse excited or randomly excited [32]. The proper orthogonal modes (POMs) then
converge to the linear normal modes, and the proper orthogonal values provide the mean
squared values of the modal coordinates.

The related SOD can be applied in inhomogeneous, lightly damped cases to find struc-
tural modes [4]. In this case, an ensemble V ≈ Ẋ of velocities is formed. This can be done by
finite difference through a matrix D, such that V = XDT . The velocity covariance matrix
S = VVT /Nv is formed, where Nv is the number of velocity samples. Then the generalized
eigenvalue problem is written as λRψ = Sψ. For a free multi-modal response with light
damping, the eigenvalues λ approximate the frequencies squared, and the inverse-transpose
of the modal matrix Ψ approximates the linear modal matrix. (Cast this way, the method
might aptly be called “frequency decomposition.”)

Another decomposition technique is the complex orthogonal decomposition (COD) [5].
Here, the ensemble X of oscillatory signals is expanded into the complex domain to form an
ensemble Z of complex analytic signals. This is done non-uniquely by the FFT [33] or Hilbert
transform [33, 34]. Then a complex Hermitian correlation matrix R = ZZ̄T /N is formed. (A
complex Hermitian matrix was also formed in the frequency domain for modal analysis [35].)
The complex Hermitian matrix R has real eigenvalues and generally complex eigenvectors
(COMs). The eigenvalues represent mean squared amplitudes of complex modal oscillations.
The COMs can be interpreted as complex modes, representing generally a mix of traveling
and standing wave behaviors, which can be extracted and quantified. As such, the COD can
characterize the modal content of systems with mixed standing and traveling wave behavior.
Initial indications are that the complex modes can be efficiently extracted. Much like POD
for general systems, the COMs will not produce complex linear normal modes except under
special circumstances. But our ongoing work suggests that the COD provides an optimized
and systematic characterization of generally oscillatory behavior.

The approach presented here is a generalized eigen decomposition based on state-variable
ensembles. We will tie this decomposition strategy to state-variable models of generally
damped linear vibration systems to reveal a method of obtaining frequency, damping, and
mode shape information, without access to input measurements. The method will be illus-
trated with numerical examples.

2 Nonsymmetric state-variable modal decomposition

In this section, we summarize the state-variable modeling of vibration systems. The decom-
position equation is presented, and then tied to the state-variable model.
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2.1 State-variable linear vibration model

The state-variable model of linear vibration systems is used on systems with nonproportional
(non-Rayleigh [36]) and nonmodal (non-Caughey [37]) damping to obtain damped vibration
modes [38, 39]. The equations of motion for free vibrations are

Mẍ + Cẋ + Kx = 0, (1)

where x is an n×1 array of mass displacements, M,C, and K, are the n×n mass, damping,
and stiffness matrices, and the dots indicate time derivatives. Then defining a 2n× 1 state
vector yT = [ẋT ,xT ], and introducing the equation Mẋ−Mẋ = 0, yields unforced equations
of motion of the form

Aẏ + By = 0, (2)

where

A =

[
0 M
M C

]
, B =

[
−M 0
0 K

]
. (3)

A and B are 2n× 2n and symmetric, but are neither positive nor negative definite.
Assuming a response of the form y = eαtφ, the eigenvalue problem

αAφ + Bφ = 0 (4)

in general yields complex eigenvalues α and eigenvectors φ, with φ = [vT ,wT ]T , where n× 1
vector partition v corresponds to characteristic shapes of velocity states, and partition w
represents characteristic shapes in displacement (complex modes). By the construction of y,
v = αw. The vectors φ are orthogonal with respect to matrices A and B. The latter does
not imply that the vectors w are orthogonal with respect to M and K. In fact, they are not.

2.2 Decomposition strategy

The decomposition strategy is based on the free-response state-variable ensemble Y =
[VT ,XT ]T , where X is a displacement ensemble, and V = XDT ≈ Ẋ is an approximate
velocity ensemble, like the SOD [4]. An example of an (N − 2nd) × N matrix of centered
finite differences, with nd = 1 for half the span of the finite difference, is

D =
1

2∆t




−1 0 1 0 . . . 0
0 −1 0 1 . . . 0
...

. . . . . . . . . . . .
...

0 . . . . . . −1 0 1




, (5)

where ∆t represents the sampling time. Thus V is n× (N − 2nd), and so the first and last
nd columns of X are dropped so that Y has compatible partitions.

We then take the derivative W = YDT ≈ Ẏ, this time using an (N − 4nd)× (N − 2nd)
difference matrix D. The first and last nd time samples of Y are then dropped so that
the dimensions of Y and W are both 2n × N − 4nd. We form a correlation matrix R =
YYT /(N − 4nd) and a nonsymmetric matrix N = YWT /(N − 4nd).
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The eigenvalue problem is then

αRψ = Nψ. (6)

Rewriting this eigenvalue problem, αYYT ψ = YWT ψ. Making use of Eq. (2), W ≈ Ẏ =
−A−1BY, and we have

αYYT ψ ≈ −YYTBTA−T ψ. (7)

We expect YYT to be invertible if all displacement measurements are independent and if
N − 4nd > n.

As such, αψ ≈ −BTA−T ψ. In matrix form

ΨΛ ≈ −BTA−TΨ, (8)

where Λ is a diagonal matrix of eigenvalues. Taking the inverse-transpose yields Ψ−TΛ−1 ≈
−B−1AΨ−T , whence BΨ−T ≈ −AΨ−TΛ, and hence

−A−1BΨ−T ≈ Ψ−TΛ. (9)

Letting U = Ψ−T , the data eigenvalue problem leads to

−A−1BU ≈ UΛ, (10)

which is a generalized eigenvalue problem with matrices A and B, the solution of which
determines the unknowns U and Λ. The matrix form of the structural eigenvalue problem
of Eq. (4) is

−A−1BΦ = ΦΓ, (11)

a generalized eigenvalue problem with the same matrices A and B, the solution of which
determines the unknowns Φ and Γ. The eigenvalue problems of Eqs. (10) and (11) have the
same solution (within the modal normalization constants), indicating that Φ ≈ U = Ψ−T

and Γ = Λ. (The same logic is seen in SOD analysis of linear vibration systems [4].)
Thus, we expect the eigenvalues of Eq. (6) to approximate the state-variable eigenvalues,

containing information about damping and frequency. The inverse of the modal matrix from
Eq. (6) resembles the complex linear normal modal matrix of the state-variable system
Eq. (4), and contains velocity and displacement partitions. The only approximation in the

method is in Ẋ ≈ XDT and Ẏ ≈ YDT . Hence we expect reasonable estimations when noise
is limited and the step size is sufficiently small compared to characteristic time scales.

3 Numerical examples

For comparison, we use the example shown in [27] for POD and [4] for SOD. We will present
underdamped and overdamped examples for both proportional and generalized damping.
The mass and stiffness matrices are

M =




2 0 0
0 1 0
0 0 1


 ,K =




2 −1 0
−1 2 −1

0 −1 1


 (12)
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and the initial conditions were x(0) = (1, 0, 0)T , and v(0) = (0, 0, 0)T . The undamped
natural frequencies of the system are ω1 = 0.4209, ω2 = 1.000, and ω3 = 1.6801.

In each simulation, the time responses for each mass displacement and velocity were
numerically computed. Here, we used a step size ∆t = 0.0049767 and a sample size N = 3000.
This time record closely matches one period of the lowest-frequency mode. We generated
the state variable response from y(t) = Φq0e

αt where q0 = ΦTAy(0). To emulate an
experiment, we kept the displacement ensemble X from the displacement partition of the
ensemble generated from sampling y(t). We approximated Ẋ ≈ V = XDT , and built the
state-variable data ensemble Y. The ensemble W = YDT (independent from displacement
modal vector u) was then formed and the endpoints were truncated to obtain compatible
matrix dimensions. The eigenvalue problem Eq. (6) was formulated using Y and W.

3.1 Proportionally damped systems

In this example we chose the damping matrix to be proportional to just the mass matrix,
such that C = cM.

First, we consider an underdamped example with c = 0.5. The system eigenvalues are

complex, of the form −ζjωj ± iωj

√
1− ζ2

j . These values are α1 = ᾱ1 = 0.25 + 0.3386i,

α3 = ᾱ4 = 0.25 + 0.9682i, α5 = ᾱ6 = 0.25 + 1.6614i. The modal damping factors are
then ζ1 = 0.5940, ζ2 = 0.2500 and ζ3 = 0.1488. The lowest-frequency mode has a damped
frequency of ωd1 = 0.3386. Our time record specified above spans 81% of the associated
oscillation period.

From the decomposition eigenvalues, estimates of the damping factors and natural fre-
quencies were identical to that of system to more than four significant figures. For pro-
portional damping three out of six of the displacement partitions of the state-variable
modal vectors are independent. The corresponding independent displacement eigenvec-
tors were normalized to real form of unit length as uT

1 = (0.3602, 0.5928, 0.7204)T , uT
2 =

(−0.7071, 0.0, 0.7071)T and uT
3 = (0.2338,−0.8524, 0.4676)T . All agree with the linear nor-

mal modes (LNMs) to 4th decimal place.
Now we consider an overdamped example with c = 2.5, leading to two complex and

four real structural eigenvalues. The complex eigenvalues are α1 = ᾱ1 = 1.25 + 1.1227i,
whereas the real pairs are (2.427, 0.073) and (2.000, 0.500), which have modal damping fac-
tors of ζ1 = 2.9701, ζ2 = 1.2500 and ζ3 = 0.7440. The decomposition method also yielded
one complex and two real eigenvalues from which damping factors and natural frequencies
are identical to those of the structural problem. Also, the corresponding independent dis-
placement eigenvectors, normalized to real form of unit length agreed with the LNMs to the
fourth decimal place.

3.2 Generally damped systems

We will consider underdamped and overdamped examples. For the underdamped example
the damping matrix was
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C =




1.2 −0.9 0
−0.9 1.2 −0.3

0 −0.3 0.3


 (13)

Then KM−1C 6= CM−1K, rendering the system to be nonmodally damped [37]. In the case
of nonmodal damping, the definition of a modal damping factor is ill posed. Nonetheless,
the frequency of damped oscillation is the imaginary part of the eigenvalue. The eigenvalues
obtained from the structural-model eigenvalue problem Eq. (4) are complex, and are α1 =
ᾱ2 = 0.7620 + 1.4190i, α3 = ᾱ4 = 0.2474 + 1.006i, α5 = ᾱ6 = 0.0405 + 0.4218i. Using the
magnitude of the eigenvalue as “ωj”, and and comparing the real part to “ζjωj” produces

numbers for ζ̃j, and ω̃j. In this case ζ̃1 = 0.0957, ζ̃2 = 0.2388, and ζ̃3 = 0.4731, and
ω̃1 = 0.4238, ω̃2 = 1.0360, and ω̃3 = 1.6107.

The modal decomposition eigenvalues were found to be nearly identical to the system
structural eigenvalues, and the “damping factors” and “natural frequencies” were identical to
fourth decimal place. All unit length normalized displacement partitions of the corresponding
complex eigenvectors, wT

1 = w̄T
2 = (−0.3674+0.0317i,−0.5901−0.0129i,−0.7197−0.0056i)T ,

wT
3 = w̄T

4 = (0.6517+0.1358i, 0.0499−0.1539i,−0.7908+0.1022i)T , wT
5 = w̄T

6 = (−0.3526+
0.1499i, 0.9224− 0.0431i,−0.3469− 0.2670i)T , agreed with the LNMs to the fourth decimal
place.

Now a highly overdamped example is considered. With the damping matrix chosen as

C =




6.0 −4.5 0
−4.5 7.5 −3.0

0 −3.0 3.0


 , (14)

the structural modal eigenvalue problem (4) produces four real and two complex eigenval-
ues. The complex eigenvalues are α1 = ᾱ1 = 0.1858 + 0.4165i, whereas the real pairs are
(9.8853, 0.2432) and (2.6180, 0.3820). The “damping factors” are ζ̃1 = 0.4073, ζ̃2 = 1.5000

and ζ̃3 = 3.2665 and corresponding “modal frequencies” are ω̃1 = 0.4561, ω̃2 = 1.000, and
ω̃3 = 1.5504.

The decomposition method produced four real and two complex eigenvalues nearly iden-
tical to the structural eigenvalues. The displacement partitions of the six eigenvectors were
wT

1 = w̄T
2 = (0.4717−0.0829i, 0.5784+0.0054i, 0.6728+0.0534i)T , wT

3 = (0.5365, 0,−0.8439)T ,
wT

4 = (0.1989, 0,−0.9800)T , wT
5 = (−0.2792, 0.8869,−0.3680)T , and wT

6 = (0.1098,−0.7683,
− 0.6305)T , which agreed with the LNMs to the 4th decimal place.

The differentiation time step is a parameter of the method. If the step size is too large,
it results in erroneous parameter estimates. This implies that the sampling resolution needs
to be chosen appropriately to fully capture the features of the transient time response, and
in turn to accurately estimate the system parameters, particularly for very highly damped
(or very fast) systems. For choosing the sample time, important features of the response are
the characteristic settling time, τ1j = 4/ζjωj, and the oscillation period, τ2j = 2π/ωdj. Our
experience with numerous simulations suggests that any step size that lies within 5% of the
minimum (over j) of τ1j and τ2j would give reasonable resolution. For data obtained through
experiments, the settling time criterion might be good enough to approximate the step size.
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Time records should be appropriately chosen with regard to the maximum of of τ1j and τ2j.
This information may not be available a-priori, but provides a rough rule of thumb for the
required time resolution.

4 Robustness under noise

To emulate a 10-bit quantization noise in digitization, we set up random fluctuations. The
MATLAB function “rand” was used to generate an ensemble of uniformly distributed random
numbers between±2−10x0, where x0 is the maximum initial condition. ‘Rand’ emulates white
noise. We verified that the spectrum of our random data was uniformly distributed. The
root mean squared value was very close to 2−10x0/

√
3. The random ensemble was added to

the displacement matrix X. We then took numerical derivatives of the new X to build V
and subsequently our ensemble matrices. All the above mentioned cases were studied under
noisy data with a step size of 0.0049767 and N = 3000. To reduce noise amplification from
differentiation over short time steps, we used a differentiation step size of 32 (nd = 16).
Examples of finite-difference mass accelerations with noise are shown in Figure 1 for the
proportionally underdamped and overdamped examples. The figure also shows how much
time record was used in all previous examples.
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Figure 1: The acceleration of mass one, computed from applying the finite difference matrix D to the
displacement ensemble with noise. (a) is the underdamped example, and (b) is the overdamped example.

For the proportionally damped, underdamped example of c = 0.5, the errors in the es-
timated damping factors and natural frequencies were 0.82%, 0.57% and 0.17%, and 0.09%,
0.05% and 0.01%, respectively. The corresponding complex independent displacement eigen-
vectors normalized to real form agreed with the LNMs to the 4th decimal place. For the
overdamped case of c = 2.5, we were able to get good estimates of slow eigenvalues. The
slow eigenvalues were 0.0743 and 0.4095, with corresponding vectors (0.3329, 0.5884, 0.7369)T

and (0.6968, 0.0221,−0.7169)T that are comparable to the state-variable model eigenvalues
(0.073 and 0.500) and vectors (0.3602, 0.5928, 0.7204)T and (0.7071, 0.0,−0.7071)T respec-

7



5678910
0.2

0.3

0.4

0.5

0.6

Increased Noise (Bits)

D
am

pi
ng

 E
st

im
at

e 
ζ

55% Error

Figure 2: The damping factor estimate for first mode for various levels of noise. The solid line (—) shows
system damping while dashed line (- -) presents the estimated damping. The horizontal axis indicates the
value b representing the uniform noise in the range ±1/2b.

tively. But the fast eigenvalues, even with faster sampling and a larger differentiation step
size, were corrupted by noise and gave erroneous results. This means we were unable to get
good estimates of ζj and ωj for the overdamped models. From the slow eigenvalues though,
we can estimate modal time constants and given the system frequencies (e.g. by FEM), we
can still estimate damping ratios with reasonable accuracy.

In generally damped examples, for the underdamped case of Eq. (13), the errors in the
estimated damping factors and natural frequencies were 0.52%, 0.04% and 0.67%, and 0.04%,
0.11% and 0.13%, respectively. The displacement partitions of the six complex eigenvectors
agreed with the LNMs to the 3rd decimal place. For overdamped case of Eq. (14), the same
interpretation holds as described in case of proportional damped overdamped case.

Lastly, we considered the effect of increasing the noise level. Here the system was chosen
to be modally under damped with C = 0.5M. We used a differentiation step size of 32
(nd = 16). As the noise bit level was incremented (doubling the noise level), the error
typically increased, until at five bits, the error in the worst mode (highest damping factor)
was 55% (Figure 2 and Figure 3). That some frequency estimates improved with noise is
probably random happenstance.

We briefly looked into varying the number of data. The results were similar with N =
3730 (a full response cycle of the lower mode damped response), and the results deteriorated,
primarily for the lowest mode, when N was increased to 9000. The suspected reason is that,
with the modal damping factor of 0.5940, the modal response was settled for most of the
time record, and therefore the lowest modal data was dominated by the noise. In fact, one
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Figure 3: The modal frequency estimate for first mode for various levels of noise. The solid line (—) shows
modal frequency while dashed line (- -) presents the estimated frequency. The horizontal axis indicates the
value b representing the uniform noise in the range ±1/2b.

of the better results came with N = 1865, representing a half cycle of lower mode response.
For further lower values of N , results deteriorated. It seems that the time record should
include at least a half cycle of the mode to be identified, but also for modes with significant
damping, the time record should not be too long. Observations with various step sizes were
also made. When noise is present, longer differentiation step sizes are beneficial at larger
noise levels. However, the differentiation step size promotes error if it is a “large” fraction
of the response period of the mode to be identified. These are simple observations from a
few numerical experiments. A systematic study is targeted for ongoing studies.

These examples suggest that the decomposition method is robust under low levels of
noise that might be seen in experiments. In multiple simulations, we found that examples
with damping factors up to around ζ = 0.8 were successful. With higher damping we could
estimate slow time constants but not ζj and ωj. In many experiments, accelerometers are
used so displacement signals will be less prone to high frequency noise since accelerations
are integrated to obtain X and V .

5 Conclusion

We have proposed a method for extracting modal information from free responses of gen-
erally damped linear multi-degree-of-freedom systems. A generalized unsymmetric eigen-
value problem was posed, involving “correlations” of state-variable ensembles. The resulting
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eigenvalues and eigenvectors can be complex in general. The eigenvalues hold information
of damping and frequency, while the eigenvectors indicate the mode shapes associated with
the state-variable model.

The method is applicable to free multi-modal responses with small or “large” damping,
and with modal or nonmodal damping. Under these conditions, the system input need not
be measured; only the response is measured.

We applied this scheme to several numerical examples, for which accurate estimates
of modal parameters (frequency, damping factor or decay rate, and mode shapes) were
possible regardless of the damping value. The sampling rate should be sufficiently smaller
than the shortest characteristic time interval, defined by decay time or oscillations period.
For nonmodally damped systems, the eigenvalues can accurately quantify the decay rates,
damped frequencies, and mode shapes, including complex modes. In the presence of noise,
large damping factors could not be extracted, but the slow decay rates were still estimated.
Numerical examples suggest that there is an optimal choice of the differentiation time step,
and the time record, for extracting modal frequencies and damping in the presence of noise.
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