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Abstract

Oscillatory behavior in a chain of masses connected by springs with continuous but

non-monotonic spring forces can be induced under quasi-static loading. Insight into

the birth of this behavior is obtained from a single mass system. A bifurcation study

shows the potential for equilibrium jumps between multiple equilibria. As such, the

transients occurring under quasi-static loading do not converge to the static loading

case. Transients during dynamic loading show sensitivity to the loading parameters.

1 Introduction

In this paper we investigate the dynamics of chains of masses connected by springs with non-
monotonic spring forces. The work is motivated by the work of Balk, Cherkaev and Slepyan
in Refs. [1,2] and in related work in Refs. [3-6]. In Refs. [1,2] the authors use a similar
system to explore the dynamics of phase transitions, e.g., in problems where materials can
exist in different forms, each characterized by its own energy function. Typically, analysis
of these problems is based on Gibbs variational principle, which states that the equilibrium
configuration minimizes the total energy in the material mixture. The authors point out
in Ref. [1] that this model implies that the system will reach a state of minimal energy
in its steady state and observe that the introduction of dynamics changes the problem in
unexpected ways. Indeed, using chains of springs with non-monotonic, discontinuous spring
forces to model the process, the authors show that dynamic effects will actually prevent the
system from reaching a state of minimum potential energy.

The results in Ref. [1] are of particular interest to us because they suggest a way to design
structures capable of dissipating energy at a fast rate. The chain, even when excited quasi-
statically, can exhibit high frequency oscillations or twinkling. One could take advantage
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this behavior by transferring energy into these high frequency motions where they will be
dissipated more rapidly due to internal friction. In order to explore this idea, we investigate
here the behavior of chains of springs with non-monotonic but continuous stiffness, which
could be easily manufactured.

This paper is organized as follows. The stability of a single degree of freedom system
involving springs with non-monotonic but continuous stiffnesses is studied in Section 2. This
is followed in by numerical experiments performed on chains of multiple springs to reproduce
some of the experiments reported in Ref. [1], this time using continuous stiffness springs.
Finally, concluding remarks finish the presentation.

2 Single Degree Of Freedom Pull Test

The work of Balk, Cherkaev and Slepyan in Ref. [1] exhibited an interesting phenomenon.
Upon application of a quasi-static displacement at the end of the chain, the equilibrium
position of all masses grew quasi-statically. When this equilibrium reached a discontinuity
in the spring force, the masses lapsed into a “twinkling” state. In our investigation of the
twinkling of systems with springs having continuous non-monotonic spring forces, we first
turn to a single degree of freedom. Behavior of the single degree of freedom will provide an
explanation for at least some of the behavior that will occur in multi-mass systems. In this
section, we look at the local bifurcations of the static equilibria. As such, we will justify the
twinkling in terms of bifurcation behavior.

We consider a mass attached to a wall on one side, and to a node (call it P) of prescribed
displacement on the other, through nonlinear springs. The qualitative form of the spring
force f(z), where z is the deformation in the spring, is shown in Fig. 1. The critical feature
of the spring force is its non-monotonicity. On the large scale the stiffness (slope) is positive,
but there is an interval in the deformation for which it is negative.

Snap-through and buckled oscillators with a single nonmonotonic elastic member and
a directly applied force have also been studied [7-13]. These systems are known to have
interesting bifurcations of equilibria, snap-through transients with possibly transient chaos
and fractal features, and regular or chaotic steady states. The problem studied here differs
by having an imposed node displacement, in contrast to a force applied to a mass, with the
mass surrounded by two snap through springs, in contrast to a single grounding spring. As
such, this problem has more complicated equilibria and static bifurcations.

2.1 Equilibrium Solutions

The equation of motion for the system is

mẍ + f(x) = f(y − x) (1)

where x is the displacement of the mass, and y is the imposed displacement at point P. Then
the static equilibrium is given by the solution of

f(x) = f(y − x)
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for x, given y. Figure 2 shows an illustration of this equation. Rather sloppily, we can denote
the solution in terms of y as a function of x, as

y = x + f−1(f(x)) (2)

We use the notation f−1 as the pre-image of f rather than the inverse, since for some values
of x and y, f is not invertible.

In sorting through the equilibrium solutions, it is helpful to look more at the features
in Fig. 1. We define the intervals In = (−∞, A), I1 = [A, B), I2 = (B, C), I3 = (C, D], and
Ip = (D,∞). B and C are in not included in any interval, but this will not pose a threat to
our understanding of the equilibria.
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I
3

I
2

f (z)

z

Figure 1: Non-monotonic but continuous force characteristic

f(x)

x y-x
x1

f(y-x)

Figure 2: Equilibrium condition that yields multiple equilibrium solutions

In the intervals In and Ip, the function f is indeed invertible. In these intervals, f−1(f(x)) =
x, and there is a single equilibrium solution at x = y/2.
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In the noninvertible part of f , we can look at x + f−1(f(x)) in terms of the horizontal
line in Fig. 2. We define the values x1, x2, and x3 in intervals I1, I2, and I3, respectively, such
that f(x1) = f(x2) = f(x3). If x is equal to either x1, x2, or x3, then f−1(f(x)) includes x1,
x2, and x3. Thus, from (2), for an equilibrium x = x1 in the interval I1, the possible values
of y are y = 2x1, y = x1 + x2, and y = x1 + x3. Likewise, for an equilibrium x = x2 in the
interval I2, the possible values of y are y = x2 + x1, y = 2x2, and y = x2 + x3. Similarly, for
an equilibrium x = x3 in the interval I3, the possible values of y are y = x3 +x1, y = x3 +x2,
and y = 2x3.

At values x = A, x = B, x = C, and x = D, there are two possible values of y. For a
fixed point at x = A, y = 2A or y = A + C. For a fixed point at B , y = 2B or y = B + D.
For a fixed point at C , y = 2C or y = C + A. Finally, for a fixed point at D , y = 2D or
y = D + B.

2 C

B+D

2 B

A+C

y

x

x13

x23
x32

x31

x21

x33

x11

x22
x12

C DA B

Figure 3: Values of y enabling equilibria of x

Given all of these pieces of information, we can construct a plot of the possible values of
y for there to be an equilibrium at x, shown in Fig. 3. The solution branches are labeled
according to the discussion in the preceding paragraph, to help distinguish how these solution
branches arise. These branch labels are of the form xij where index i indicates the interval Ii
in which the solution is contained and index j denotes the interval Ij in which the contributing
component of the pre-image f−1(f(x)) lies. There is some variation that can occur in this
figure. The branches labeled x12 and x21 are depicted with an undulation, meaning as the
solution curve goes from A to B, the x12 curve can have a local minimum, an inflection point,
and a local maximum, and then merge with the diagonal curve at point B. This undulation
may or may not be there, depending on the details of the f(x) curve. The same is true for
the x21 branch. There is no restriction on whether A+C is less than or greater than 2B, and
likewise whether B+D is less than or greater than 2C. These possibilities depend on the
f(x) characteristic, and influence the details of the equilibrium curves. We will revisit these
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details when we discuss stability.
Inverting this picture provides the plot of fixed points x as a function of parameter

y. Depending on the details above, given a value of y, there may be as few as a single
equilibrium, or as many as three, five or seven equilibria. Figure 4 shows a couple of cases
for the plot of equilibria as functions of y.

A statically forced buckled system has an equilibrium equation f(x) = F , producing at
most three equilibria for the forms of f(x) considered here. Equilibria curves in Fig. 4 indicate
that the two-spring system with imposed displacements is potentially more complicated.

2.2 Local Stability of Equilibria

For an undamped damped single-degree-of-freedom oscillator, local stability is determined
by the stiffness term. The system will either be a center (stable) or a saddle (unstable). If
we let x = xe + u, where xe is the equilibrium position, and linearize equation (1) about the
equilibrium xe, the stiffness term has the form

f(xe) + f ′(xe)u − f(y − xe) + f ′(y − xe)u = [f ′(xe) + f ′(y − xe)]u

where f ′(z) = df/dz. Thus, the linearized equation of motion is

mü + [f ′(xe) + f ′(y − xe)]u = 0

The equilibrium is unstable if k = f ′(xe) + f ′(y − xe) < 0. We can get some qualitative
information from Fig. 1. If xe is in I1 and y−xe is in I1, then clearly f ′(xe)+ f ′(y−xe) > 0,
and the equilibrium is stable. Hence, the solution branch x11 in Fig. 3 is stable. If xe is in
I2 and y − xe is in I2, then clearly f ′(xe) + f ′(yxe) < 0, and the equilibrium is unstable.
Therefore, the branch x22 in Fig. 3 is unstable. If xe is in I3 and y − xe is in I3, then again
f ′(xe) + f ′(y − xe) > 0, and the equilibrium is stable. Thus, the branch x33 in Fig. 3 is
stable. Similarly, if xe is in I1 and y − xe is in I3, or if xe is in I3 and y − xe is in I1, then
f ′(xe) + f ′(y − xe) > 0, and the equilibrium is stable. Hence, the branches x13 and x31 in
Fig. 3 are stable. However, if xe is in I2 and y − xe is in I1 or I3, or if xe is in I1 or I3
and y − xe is in I2, then f ′(xe) and f ′(y − xe) have opposite signs, and more is needed to
determine stability. The relative values of the slopes of f(x) and f(y − x) in these cases
determine stability. The slopes also are influenced by the relative locations of A, B, C, and D
in the f(x) characteristic, which were noted above to influence the details of the equilibrium
curves. The function f(x) requires at least cubic terms in its polynomial degree. The cubic
term will determine the change in the slopes across the local maximum at B and the local
minimum at C .

An analysis of this follows for the case of xe in I1 and y−xe in I2. In the neighborhood of
point x = B, we let x = B−εu, where ε is a small bookkeeping parameter, and y−x = B+εv1,
where v1 is then expressed as v1 = u + εv. Given εu, εv1 is determined by the function f(x).
We expand f(x) and f(y − x) in Taylor series, noting that f ′(B) = 0, yielding

f(B − εu) = f(B) + ε2f ′′(B)u2/2 − ε3f ′′′(B)u3/6 + . . .

f(B + εv1) = f(B) + ε2f ′′(B)v2
1/2 + ε3f ′′′(B)v3

1/6 + . . .
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Applying equilibrium, f(x) = f(y−x), allows us to approximate the relationship between
u and v1:

ε2f ′′(B)u2/2 − ε3f ′′′(B)u3/6 = ε2f ′′(B)v2
1/2 + ε3f ′′′(B)v3

1/6 + . . .

whence, letting v1 = u + εv, we have

ε2f ′′(B)u2/2 − ε3f ′′′(B)u3/6 = ε2f ′′(B)(u + εv)2/2 + ε3f ′′′(B)(u + εv)3/6 + . . .

Terms of order ε2 are balanced. Equating terms of order ε3 leads to

v = −f ′′′(B)u2/(3f ′′(B)) = au2

Since the curvature at B is negative, if f ′′′(B) is positive (likely but not guaranteed, as
fine variations in f(x) can take over), then we have a > 0. Next, we determine local stability
by examining the stiffness term

k = f ′(x) + f ′(y − x) = f ′(B − εu) + f ′(B + εu + ε2au2)

Expanding f ′(x) and f ′(y − x) in Taylor series, and noting f ′(B) = 0, we have

k = −f ′′(B)εu + f ′′′(B)ε2u2/2 + . . . + f ′′(B)(εu + ε2au2) +

f ′′′(B)(εu + ε2au2)2/2 + . . . = (2/3)f ′′′(B)ε2u2 + O(ε3) > 0

for small ε. Thus, on the branch of equilibria labeled x12 in Fig. 3, close to the bifurcation
point at x = B, the stiffness is positive and the equilibria are locally stable if f ′′′(B) > 0.
We note further that, since y − x = B + εv1 = B + εu + ε2au2 and x = B − εu, we have
y = x + B + εu + ε2au2 = 2B + aε2u2. This indicates a vertical quadratic tangency in the
equilibrium branch for x as a function of y, with positive curvature (unless f ′′′(B) < 0).

A similar analysis holds for case of xe in I2 and y − xe in I1. In the neighborhood of
point x = B, we let x = B + εu, and y − x = B − εv1, where v1 is then expressed as
v1 = u + εv. Again, we find that k = (2/3)f ′′′(B)ε2u2 + O(ε3) > 0, if f ′′′(B) > 0, for small
u. Hence, the branch of equilibria labeled x21 is also locally stable if f ′′′(B) > 0. Again,
we find that y = 2B + aε2u2 on the branch near the bifurcation point, indicating that the
vertical quadratic tangency (if f ′′′(B) > 0) of x as a function of y holds on both sides of the
mother branch. The local bifurcation thus resembles a supercritical pitchfork (subcritical if
f ′′′(B) < 0), Ref. [14].

Similar analysis for the bifurcation at the point x = C yields similar results for the
branches x23 and x32. If f ′′′(B) < 0, the curves local to the bifurcation point bend the
opposite direction and are unstable.

Figure 4, plotting xe as a function of y, shows the stable branches as solid lines, and
the unstable branches as dashed lines. The simple equilibria solution, xe = y/2, is stable
until xe reaches x = B (y = 2B). Then it becomes unstable in what qualitatively matches a
supercritical pitchfork bifurcation if f ′′′(B) > 0 (Fig. 4(b)), and a subcritical bifurcation if
f ′′′(B) < 0 (Fig. 4(a)). Continuing along the xe = y/2 curve, these equilibria become stable,

6



D

C

B

A

y

x
D

C

B

A

y

x

A+C 2B 2CB+D A+C2B B+D2C

(a) (b)

(A+C)/2

(B+D)/2

x
11

x
13

x
12

x
23

Figure 4: Equilibrium positions in x as functions of imposed extensions y. Solid lines are
stable. (a) and (b) are two characteristics, depending on the form of f(x). Part (a) shows
examples of branches x11 (solid line), x12 (dotted), and x13 (solid), corresponding to those
shown in Figure 3. A branch such as x23 contains both stable and unstable intervals (dotted
and dashed).

again through a pitchfork bifurcation, at y = 2C. This solution branch remains stable as y
increases thereafter.

In the example solution curves of Fig. 4(a), a double saddle-node bifurcation takes place
on the branches bifurcating at x = B, and each branch regains stability. In this interval, up
to five equilibria are possible for the given y, three of which are stable. In the bifurcation
structure shown at x = C, a supercritical bifurcation produces stable branches, which,
when followed, pass through a saddle-node bifurcation, losing stability. Further along the
branches is another saddle-node bifurcation and regained stability. In this interval, up to
seven equilibria are possible for a given y, four of which are stable. In contrast, a mass with
a single buckling spring of the same form, and a constant load, could only have as many as
three equilibria.

Considering various force characteristics f(x), the curve might have features such as Fig.
4(b). This figure shows at most three equilibria for a given y, with at most two stable
equilibria. Two of the saddle-node bifurcations are missing on each off-diagonal branch, in
comparison with Fig. 4(a). This figure would be consistent with a f(x) characteristic that
was cubic, and of no higher degree. In general, an f(x) characteristic can lead to features
seen in either Fig. 4 (a) or (b), in various combinations.

The pitchfork bifurcations are structurally unstable. In a real system, the two nonlinear
springs would not be identical. This off symmetry would disrupt the pitchfork bifurcations,
replacing them with nearby saddle-node bifurcations. However, the large-scale gist of the
set of curves would be preserved for nearly identical nonlinear springs.
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2.3 Numerical Examples

If we choose f(x) to be a cubic polynomial, we get an equilibria graph such as Fig. 4(b).
Stiffness functions with higher-degree effects lead to more complicated equilibria. Here we
show an example of a snap through system with multiple equilibria, by choosing a spring force
curve as shown in Figure 5(a). This spring-force function is continuous with a discontinuity
in curvature at the inflection point. This produces a set of equilibria, as a function of y, as
shown in Fig. 5 (b). The equilibria curves are similar to the branches between y = A + C
and y = 2B on Figure 4(a).
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0.2
0.4
0.6
0.8
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2.5
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x

f(x)

y

x
(a)

(b)

Figure 5: (a) Graph of f(x). (b) Equilibria associated with springs characterized by f(x),
as a function of y.

A plot of f(x) − f(y − x) depicts the equilibria as the zeros of the graph for various
values of y. For example, if y = 1 displacement unit, there is a single equilibrium according
to Figure 6(a), which would land on branch of equilibria in Fig. 5(b) corresponding to the
branch x11 in Figure 4(a), while if y = 3, there are three equilibria. The equilibrium with
the negative slope at the zero of f(x) − f(y − x) is unstable. As y increases, the middle
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equilibrium eventually undergoes a bifurcation, somewhere between the values of y = 4 and
y = 4.2, which are depicted in Figures 6 (c) and (d), as the slope becomes less negative
and passes through zero. At this bifurcation, the saddle point stabilizes, and two saddles
are produced on either side. The graph of further increased values of y shows these five
equilibria, two of which are the new saddles. Finally, if y increases enough, four zeros of
f(x)− f(y − x) are lost in two simultaneous saddle-node bifurcations (Fig. 6 (f) is just past
the saddle-node bifurcations).
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Figure 6: Graphs of f(x) − f(y − x) show zeros which correspond to equilibria, and how
they change as y varies. (a) At y = 1 there is one zero, (b) at y = 3 there are three zeros,
(c) at y = 4 there are also three zeros, (d) at y = 4.2 we see five zeros, (e) y = 4.25 has five
zeros, and (f) at y = 4.35 we see one zero after a double saddle-node bifurcation.

The phase portraits of the undamped system associated with values of y represented in
Figure 6 are shown in Fig. 7 (a) – (f). This figure illustrates the multiple equilibria and
their stabilities. Neutrally stable center-type equilibria would become stable nodes with the
addition of small damping, and correspond to the stable equilibria curves. Saddle equilibria
can be inferred in the spaces between sets of periodic orbits associated with the stable
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equilibria. Figure 7 (a) has a single center-type equilibrium, while Figure 7 (b) shows two
centers and one saddle. In Figure 7(c), the saddle is flattening as it is close to bifurcating,
corresponding to the flattening slope in Figure 6(c). After the bifurcation, there are five
equilibria, three centers and two saddles, seen in Figures 7 (d) and (e). Figure 7(f) is
just beyond the saddle-node bifurcation, in which two pairs of equilibria have merged and
vanished, leaving one center. The nearly zero values of the function (Figure 6(e)) cause a
set of trajectories to nearly collapse onto the dark circular feature in the plot.
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Figure 7: Phase portraits for various values of fixed y illustrate the multiple equilibria, their
stabilities, and imply separatrices for the stable equiibria. (a) y = 1, (b) y = 3, (c) y = 4, (d)
y = 4.2, (e) y = 4.25, and (f) y = 4.35. Between (a) and (b) there is a pitchfork bifurcation
near y = 2. Between (c) and (d) there is a pitchfork bifurcation near y = 4. Between (e)
and (f) there is a pair of saddle-node bifurcations.

2.4 Implications for a Quasi-Static Pull Test

A quasi-static pull test corresponds to a very slow increase (or decrease, for a push test) in
y. In our thought experiment, y increases slowly enough that it can be considered constant,
suitable for the above analysis of equilibria. Also, while there is no damping in the model,
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we consider that a mechanical system will have even a small amount of damping, such that
slow changes of equilibria are slower than the decay of transient responses. However, the test
is dynamic in the sense that we are interested in transient behavior, should it be significant.

The bifurcation structure for the single degree of freedom provides some indication of the
expected behavior of a quasi-static pull test.

Let us first consider a pull test on a system with equilibrium structures similar to Fig.
4(a). If the system is at equilibrium on, for example, branch x11, defined by y = 2x, and
then y is quasi-statically increased, what happens? When point B is reached, the current
solution branch becomes unstable, and the equilibrium solution jumps to either branch x21

or x23. Large transient dynamics would then take place before the system settles onto
either stable branch. This could be viewed as a twinkling phenomenon. If the system is at
equilibrium on, for example, branch x33, defined by y = 2x, and then y is quasi-statically
decreased to the point C (in a push test for this figure) the branch becomes unstable and
there is a continuous, albeit transverse, transition to the equilibrium on the upper and lower
branches. Following either branch, it will soon encounter a saddle-node bifurcation, at which
the equilibrium vanishes, and the system jumps to another equilibrium, resulting in large
transient dynamics before the system settles into a new stable equilibrium, on either branch
x21 or x23. This, too, could be viewed as a twinkling phenomenon.

If the pull test has finite speed in y, the bifurcation parameter can no longer be consid-
ered a constant parameter, and the behavior deviates from the static bifurcation analysis.
Detailed transition behavior under slowly varying parameters can be analyzed using singu-
lar perturbation techniques, multiple time scales, or the asymptotic methods in Ref. [15-21].
The transverse transition in our problem may be slightly delayed in its onset, and then
look sudden, resulting in large transient dynamics before the system settles to a new stable
equilibrium, on either branch x21 or x23. The particular case of a pitchfork bifurcation is
examined in Ref. [21], in which a prediction is made as to which of the new equilibria is
approached based on the initial conditions. With very low damping in the model, depending
on the rate of the pull, this transient behavior can take the form of an oscillation of signif-
icant amplitude. This, too, can be seen as a one-degree-of-freedom twinkling phenomenon,
analogous to that observed in Balk, Cherkaev and Slepyan [1].

A similar behavior would be observed in a quasi-static push test through point C.
A quasi-static pull test on a system with equilibrium structure similar to Fig. 4(b) would

have slight differences in behavior. When point B is reached, there is a continuous, transverse,
transition to the equilibrium on the upper or lower branch. Following either branch would
not encounter a saddle-node bifurcation.

In order to encourage twinkling in a quasi-static pull test, the design recommendation is
to incorporate a spring with a force f(x) that leads to a picture with either of the features
shown in Fig. 4(a). This f(x) would have polynomial contributions of degree higher than
three. Such features can be obtained, such that twinkling is encouraged, by pushing the
points B and C toward each other. A subcritical bifurcation is expected to induce a larger
destabilization jump, and thus larger transients and more “twinkling”.

The response of a dynamic pull test would deviate from this discussion on the equilibria
curves. However, we conjecture that a dynamic pull test can induce oscillations, or twinkling,
if the f(x) characteristic generates a equilibrium structure as in Fig. 4 (a) or (b).

The structural instability can also be exploited in design. Asymmetry in the springs can
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be designed to disrupt the pitchfork bifurcation and encourage the quasi-static pull test to
follow a chosen curve of Fig. 4 (a), such that the path encounters a maximal jump in the
static equilibria upon the saddle-node bifurcation.

2.5 Extension To Higher Degrees Of Freedom

Our analysis approach cannot uncover the details of the equilibria and bifurcation structure
for a system with many degrees of freedom. Puglisi and Truskinovsky in Refs. [22-24] were
able to categorize the equilibria for small chains by using energy methods, although without
the detail of the Section 2.2 on the possibilities for a single mass. For a system with n
uniform masses and springs, the diagonal solution xj = jy/(n + 1) exists, and is unstable
when the deformation D in the springs are such that the slope in f(D) is negative. This
corresponds to the diagonal solution in the single-degree-of-freedom system. It loses stability
in a pull test for which the deformation reaches a local extremum in f(x).

To get a feeling for the multi-degree of freedom dynamics associated with the loss of
stability we look at numerical simulations.

y = L( t )

Figure 8: Configuration of 4-mass chain. The motion of the fourth “mass” is imposed.

We investigate the dynamics of the 4-mass chain shown in Fig. 8. Masses at rest are set
two distance units apart and then they are connected by springs with the force-displacement
function as shown in Fig. 9.

The right mass is given a prescribed displacement L(t) which is increased very slowly until
all springs are stretched past the bifurcation point. As in Ref. [1], at the bifurcation point the
masses start to oscillate with high frequency, as shown in Fig. 10. This will happen regardless
of how slowly the right mass is pulled. This high frequency motion remains even if the system
is brought back to its initial configuration (L = 0). At that point there is a remnant kinetic
energy that is “unrecoverable”. This is illustrated in Fig. 11, which shows the total energy
as a function of the elongation L(t) for a complete cycle where L is slowly increased to
L = 5 and then slowly brought back to zero. Finally, a small amount of viscous damping is
introduced. As in Ref. [1], this results in a hysteresis in the force-displacement curve of the
chain (Fig. 12), again showing that a purely static analysis, e.g., Gibbs variational principle,
will not produce the steady state solution of the dynamical system when the excitation itself
is quasi-static.

A dynamic pull will also induce oscillations that significantly affect how the masses snap
through, depending on the nature of the pull. As an illustration, we included light damping
and pulled the end mass as y = L(t) = vt, 0 < t < 5/v, and y = 5 displacement units for
t larger than or equal to 5/v, letting the masses settle to equilibrium. Figure 13 shows the
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equilibrium positions reached by each mass for various pulling speeds, v. Masses 1 and 3
can reach four different positions, while mass 2 can reach five positions. The combinations
of these mass positions correspond to seven stable equilibria in the six-dimensional phase
space with y = 5. There are four different possible stable spring lengths for y = 5 (Fig. 14).
At equilibrium, each spring would have the same force, and there would be two stable snap
through configurations for a given force F such that 0 < F < 1. Thus, with the four possible
stable spring lengths at equilibrium, there are two possible equilibrium spring forces. The
intervals in v with large variation of equilibria suggest that there may be fine structure in
transient behavior with respect to parameters, and likely also in the basin boundaries in the
phase space. Indeed with single-degree-of-freedom buckled oscillators, which have simpler
equilibria configurations, basin boundaries can be fractal [13]. This example suggests that the
transient dynamics can be very complicated. A larger degree of freedom system is expected
be even more complicated.

3 Final Remarks

We have shown that the twinkling phenomenon observed in Ref. [1] for mass chains with
non-monotonic discontinuous stiffnesses can occur in chains with smooth, non-monotonic
stiffnesses that resemble buckling elements. Under quasi-static loading, the system undergoes
a sudden snap through when the springs snap through, inducing high frequency oscillations.
A bifurcation study for a single-mass chain provided insight as to how this occurs. The single
degree of freedom system undergoes destabilizing bifurcations which may involve jumps in
equilibria, depending on the details of the stiffness characteristics. A quasi-static loading
does not converge to the static equilibria. Instead, transient oscillations are induced at the
bifurcations. These transient dynamics can be very complicated. In future work we will
compare the wave propagation through the masses with continuous snap-through elements
with that of discontinuous spring elements in Ref. [2].
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Figure 13: The equilibrium position settled to by each mass when L = 5 displacement units
is reached at various speeds v.
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