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Abstract

Modal parameter estimation in terms of natural frequencies and mode shapes
is studied using smooth orthogonal decomposition for randomly excited vibration
systems. This work shows that under certain conditions, the smooth orthogonal de-
composition eigenvalue problem formulated from white noise induced response data
can be tied to the unforced structural eigenvalue problem, and thus can be used for
modal parameter estimation. Using output response ensembles only, the generalized
eigenvalue problem is formed to estimate eigen frequencies and modal vectors for an
eight-degree-of-freedom lightly damped vibratory system. The estimated frequen-
cies are compared against system frequencies obtained from structural eigenvalue
problem and estimated modal vectors are checked using the modal assurance crite-
rion. Simulations show that for light damping, satisfactory results are obtained for
estimating both system frequencies and modal vectors.

1 Introduction

Output-only modal analysis has gained popularity over recent years (see for
example [1–9]). Advantages of output-only analysis over traditional modal
analysis are the following. 1) In many real life applications, the nature of
input forcing prevents its measurement (for instance earthquake, wind, or
traffic loads on structures) and output-only analysis eliminates the need to
measure inputs. 2) The construction of complex frequency response functions
or transfer matrix functions requires an experienced engineer to correlate var-
ious response rows (or columns) to correctly identify the system modes and
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is cumbersome in case the modes are not well separated. 3) Contrary to tra-
ditional modal analysis, in many cases output-only analysis can eliminate the
need of testing the structure at various locations (or components).

Output-only methods can be either time or frequency based. Some time do-
main output-only methods are the Ibrahim time domain method [1], polyref-
erence method [2], eigensystem realization algorithm [3], least square complex
exponential method [4], independent component analysis [10, 11]and stochas-
tic subspace identification methods [5]. Frequency based output-only methods
include the orthogonal polynomial methods [6, 7], complex mode indicator
function [8], and frequency domain decomposition [9]. Recent additions to the
time domain output-only family are the smooth orthogonal decomposition
[12] and state-variable modal decomposition methods [13, 14], that have shown
good results for modal analysis of free response cases. These methods are vari-
ants of proper orthogonal decomposition methods recently studied for struc-
tural modal analysis [15–19]. The smooth orthogonal decomposition method
is also applicable in blind source separation [20], fatigue damage identification
[21, 22], and was also presented as a generalized modal analysis scheme [23].
The advantages of using these decomposition based methods are that they do
not involve the possibility of oversized state matrices and their spurious modes
(as in Ibrahim time domain), estimation of states (for instance in stochastic
subspace identification methods) or spectral density functions (as in frequency
domain decomposition) or constructing generalized block Hankel matrices (as
in eigensystem realization algorithm), and thereby are simpler in construction
and induce minimum assumptions. However, these methods have room for de-
velopment. The current work explores smooth orthogonal decomposition for
the modal parameter estimation of systems under random excitation.

2 Smooth orthogonal decomposition

2.1 Smooth orthogonal decomposition and modal analysis for free vibration

The “smooth orthogonal decomposition” [12] can be applied to lightly damped
symmetric vibration systems with inhomogeneous mass distributions to find
structural modes. First, an n × N ensemble matrix X of displacements is
obtained from N time samples of n displacement signals. Then an ensemble
V ≈ Ẋ of velocities is formed. This can be done by finite difference through
a matrix D, such that V = XDT where X is an ensemble of displacements
(in structures case). Next the velocity covariance matrix S = VVT/Nv is
formed, where Nv is the number of velocity samples. If the finite difference
covers two adjacent samples, such that vi(tj) = xi(tj+1) − xi(tj), then Nv =
N − 1. If vi(tj) = xi(tj+1) − xi(tj−1), then Nv = N − 2, and so on. Keeping
the displacement data that correspond to the calculated velocity data, the
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ensemble X is pared down to the same dimensions as V. The matrix R =
XXT/Nv is then formed, representing a covariance matrix if the mean of the
displacement data is zero.

Then the smooth orthogonal decomposition is based on a generalized eigen-
value problem cast as

λRψ = Sψ. (1)

For a free multi-modal response with light damping, the eigenvalues λ approx-
imate the frequencies squared, and the inverse-transpose of the modal matrix
Ψ approximates the linear modal matrix.

To see this, consider first the symmetric undamped vibration system of the
form

Mẍ + Kx = 0, (2)

which is associated with the eigenvalue problem −ω2Mφ+ Kφ = 0, which in
matrix form is

KΦ = MΦΛ, (3)

where Λ is a diagonal matrix of eigenvalues and the columns of Φ are the
eigenvectors. The eigenvalues and eigenvectors provide the modal frequencies
and mode shapes.

The smooth orthogonal decomposition eigenvalue problem Eq. (1) can be writ-
ten as λXXTψ = VVTψ, or

λXXTψ = XDTDXTψ. (4)

Close examination [12] shows that DTDXT
≈ −ẌT . If the system damping

is negligible, then from the symmetric vibration model of Eq. (2), we would

find −ẌT = XTKM−1. Hence, Eq. (4) becomes λXXTψ = XXTKM−1ψ. In
matrix form,

XXTΨΛ = XXTKM−1Ψ. (5)

Assuming XXT is invertible (n modes are active), we have ΨΛ = KM−1Ψ.
Taking the inverse transpose and noting symmetry, Ψ−TΛ−1 = K−1MΨ−T ,
and hence

KΨ−T = MΨ−T Λ. (6)
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Comparing equations (Eq. 6) and (Eq. 3), the eigenvalue problem of smooth
orthogonal decomposition has reduced to the eigenvalue problem Eq. (3) of
the undamped vibration system. The smooth orthogonal decomposition modal
matrix is thus related to the structural linear modal matrix as Φ = Ψ−T .
Chelidze and Zhou [12] derived this relationship starting with an optimization
representation of the eigenvalue problem.

Smooth orthogonal decomposition is applicable for symmetric, but otherwise
general, mass and stiffness distributions. Smooth orthogonal decomposition di-
rectly produces estimates of the modal frequencies from the eigenvalue prob-
lem. Insight to modal participation is not directly obtained, but can come
from analysis of the modal coordinates, dependent on how modal vectors are
normalized. Limitations of smooth orthogonal decomposition are that smooth
orthogonal decomposition is restricted to lightly damped systems, and it has
not been justified or studied for random excitations. Also, sufficient numbers
of sensed displacements are needed.

2.2 Smooth orthogonal decomposition for systems under random excitation

Previously, proper orthogonal decomposition for modal analysis was justified
for random excitation [19]. Here the smooth orthogonal decomposition will be
justified for white noise excitation.

2.2.1 Smooth orthogonal decomposition and random excitation

Consider the symmetric vibration system neglecting damping,

Mẍ + Kx = f(t), (7)

where f(t) is a random excitation. In terms of the sampled ensemble matrices,

MẌ + KX = F, with F representing the ensemble matrix of the sampled
f(t), and therefore DTDXT

≈ −ẌT = XTKM−1
− FTM−1. Hence, from the

matrix form of (4)

1

N
XXTΨΛ =

1

N
XXTKM−1Ψ −

1

N
XFTM−1Ψ. (8)

The elements in the matrix 1

N
XXT represent cross correlations (with zero

delay) between responses, and are expected to be nonzero. The elements in
the matrix L = 1

N
XFT represent cross correlations (with zero delay) between

responses and random inputs. In other words, the elements Lij are the means
of the products xi(t)fj(t). If their expected values are zero, then this term can
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be neglected, and the decomposition eigenvalue problem would then converge,
as N gets large, to

1

N
XXTΨΛ =

1

N
XXTKM−1Ψ, (9)

which is the same as Eq. (5), and thus reduces to the undamped structural
eigenvalue problem if XXT is invertible. Under this condition, the smooth
orthogonal decomposition, even with random excitation, would produce the
modal frequencies and mode shapes of the system. Thus we are interested in
conditions for which L → 0 as N gets large.

Elements of L have the form

Lij =
1

N
ΣN

k=1Σ
m
l=1

∞
∫

−∞

hil(τ)fl(tk − τ)dτfj(tk), (10)

where hil(t) is an element of the impulse response matrix, between f(t) and x.
In this form hil(t) is a linear combination of modal coordinate impulse response
functions, each sinusoidal with a modal frequency. Interchanging the order of
sums, Lij = Σm

l=1

∫

∞

−∞
hil(τ)

1

N
ΣN

k=1fl(tk−τ)fj(tk)dτ = Σm
l=1

∫

∞

−∞
hil(τ)C

f
jl(τ)dτ,

where Cf
jl(τ) is the cross correlation between the forcing functions associated

with coordinates j and l.

2.2.2 White noise

Here there are two useful possibilities. One is that the forcing on all coordinates
are statistically independent. For example, independent bombardment of each
coordinate by random turbulence fluctuations might qualify. Then Cf

jl(τ) =

Rf
j (τ)δjl, where Rf

j (τ) is the autocorrelation of the jth forcing term. If the

forcing functions are modeled as white noise, then Cf
jl(τ) = γjδ(τ)δjl, where

δ(τ) is the Dirac delta function, and δjl is the Kronecker delta.

Another possibility is that each forcing term is dependent, for example in
random base excitation. Then fj(τ) = γjf(τ), and hence Cf

jl(τ) = γ̂jlRf(τ).

If the forcing function is modeled as white noise, then Cf
jl(τ) = γjlδ(τ).

In either of these white noise cases, we have the form Lij = Σm
l=1

∫

∞

−∞
hil(τ)γjlδ(τ) =

Σm
l=1hil(0)γjl. For a typical vibration system, the impulse response function will

be such that hil(0) = 0, whence Lij = 0. Thus, for white noise, the response
and excitation are uncorrelated, and the matrix form of the smooth orthogonal
decomposition eigenvalue problem Eq. (4) represents the undamped structural
eigenvalue problem Eq. (3) for largeN . As such, the smooth orthogonal decom-
position should produce estimates of the modal frequencies and mode shapes
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of the undamped model under white noise excitation. The natural excitation
algorithm (referred to as NExT) [24] also arrives to a similar conclusion al-
beit in a different way. There, it was shown that for a system subjected to
uncorrelated white noise inputs, the cross correlation between various outputs
would be a sum of complex exponential functions of the same form as the
sum of impulse response functions of the original system. Thus, NExT would
accommodate using output-only methods for modal parameter identification
in case of independent (uncorrelated) white noise forcing.

3 Example

We simulated the eight-degree-of-freedom linear vibratory system shown in
Fig. 1. The system observes light modal damping and was excited by white
noise applied to the first mass with zero initial conditions. The mass (kg) and
stiffness (N/m) matrices are given as

M =
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, (11)

and the damping matrix is chosen to be C = cM, where c = 0.01 Ns/m.

The system was simulated for 1000 seconds with the Simulink toolbox in Mat-
lab, which uses a fixed-step Dormand Prince (a member of family of Runge-
Kutta methods) differential equation solver [25] to evaluate the response of
the system. White noise forcing was generated using the Gaussian white noise
generator function that generates discrete-time normally distributed random
numbers with sampling time step matching the solver step size chosen as 0.1,
resulting in generation of 10,000 data points. The forcing was observed to have
a mean approaching zero. Both displacement and forcing matrices were saved
to the Matlab workspace for further processing. The excitation was applied to
the first mass only.
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In the decomposition, the V ensemble was formed with centered finite dif-
ferences with a total step of two samples, such that difference matrix D was
Nv × N , and V = XDT was n × Nv, where Nv = N − 2. From the data
decomposition eigenvalues, estimates of the natural frequencies are compared
to the true modal frequencies in Table 1.

The modal assurance criterion [26, 27] is a useful tool for testing whether or not
the estimated modes are consistent with the system modes. The normalized
inner products (squared) between estimated and true modes are seen in Table
2. Values of near unit magnitude indicate modal vectors that nearly line up.
For visualization, the modal vectors from smooth orthogonal decomposition
and the structural eigenvalue problem are compared in Fig. 2.

With random excitation, results are expected to converge as N increases. For
this example, we increased N , with the time step fixed at 0.1, and plotted the
estimated frequencies in Fig. 3 (Table 3 shows the percent errors). Increasing
N improves the frequency estimates. The period of the lowest-frequency mode
is about 34 seconds. Estimates of this mode converged within about 10000
samples, or 1000 seconds (about 30 first-mode cycles of random response).

Important in the convergence is the relative contributions of matrices 1

N
XXT ,

1

N
VVT and 1

N
XFT . The maximum singular values of these matrices are plot-

ted in Fig. 4, indicating that 1

N
XFT approaches zero (while the other matrices’

singular values settle to finite values), thereby becoming negligible for large
N .

The example problem studied had a maximum damping ratio of ζ = 0.027
in the system corresponding to fundamental frequency of ω1 = 0.1838. With
increasing damping, the results deteriorated as seen in Fig. 5, even with in-
creased sample size. When the system had a first-mode damping factor of
ζ = 0.8, the error in corresponding frequency estimation was ≈ 8%. We also
see in the Fig. 5, that the frequency estimation is very good for the ideal
undamped case, for which the theory was developed.

4 Conclusion

The extension of smooth orthogonal decomposition for modal parameter esti-
mation under random excitation has been presented. Analysis suggests that,
for undamped systems, if the expected value of the product between response
and excitation variables is zero, then the smooth orthogonal decomposition
converges to an equivalent representation of the undamped structural eigen-
value problem, and therefore should produce estimated modal frequencies and
mode shapes for randomly excited structures. This was justified for white
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noise excitation, and the convergence to the structural eigenvalue problem
was demonstrated in a simulation.

In the simulation example, random excitations were applied to a linear eight-
degree-of-freedom structural system while damping was kept light. It was
shown that the mean of the product of displacement matrix and forcing vector
approaches zero as sufficiently large number of samples are captured. This in
turn means that the effect of forcing in formulating the eigenvalue problem
becomes negligible. Therefore, the smooth orthogonal decomposition eigen-
value problem from data of the randomly forced problem in essence becomes
representative of the free structural eigenvalue problem.

The example problem studied was subjected to light damping. As damping
increases, the estimation results slowly deteriorated. While this work focused
on white-noise excitation, if it can be shown that the mean of product between
the response and the forcing approaches zero (in reference to Eqs. (8) and (10))
for other classes of random excitation, this would broaden the applicability of
smooth orthogonal decomposition for randomly excited systems.
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Fig. 1. The mass-spring-damper model. The dashpots are figurative to represent the
presence of damping, and do not accurately correspond to the example damping
matrix.
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Fig. 3. The frequency estimates improve as N gets large. The solid line (—) repre-
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quencies (rad/sec). The percent error in frequency estimation computed at N = 104

for modes 1 to 8 are 1.2%, 0.17%, 0.12%, 0.02%, 0.11%, 0.22%, 0.01% and 0.31% re-
spectively also shown in Table 1.
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Table 1
System frequencies estimated from smooth orthogonal decomposition (SOD) with
white noise forcing compared against the structural eigen frequencies from the eigen-
value problem (EVP) of Eq. (3)

SOD Structural EVP % Error

0.1816 0.1838 1.19

0.5275 0.5266 0.17

0.8133 0.8143 0.12

1.0963 1.0966 0.02

1.3875 1.3859 0.11

1.6449 1.6412 0.22

1.8368 1.8366 0.01

1.9524 1.9586 0.31

Table 2
Estimated modes compared against system modes using the modal assurance crite-
rion

Mode 1 2 3 4 5 6 7 8

1 -1.06 0.50 -0.14 0.01 -0.08 0.09 0.02 -0.13

2 -0.17 0.91 -0.13 0.08 -0.01 -0.03 -0.12 -0.12

3 0.21 0.16 0.99 0.13 0.16 -0.17 -0.10 0.05

4 -0.01 -0.01 -0.01 -0.98 -0.01 -0.02 -0.10 -0.15

5 0.15 0.09 0.08 0.02 1.17 -0.39 -0.23 0.05

6 0.21 0.11 0.13 -0.03 0.79 -1.13 -0.24 0.07

7 0.13 0.12 -0.01 -0.03 0.05 0.04 -1.01 0.11

8 -0.02 -0.08 -0.08 0.05 0.03 -0.08 -0.00 0.99
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Table 3
Percentage error computation for all modes

Sample Points 102 102.5 103 103.5 104 104.5 105 105.5 106

ω1 9.68 6.69 4.95 1.08 1.19 0.70 0.48 0.38 0.00

ω2 2.54 2.14 2.82 0.49 0.17 0.17 0.11 0.05 0.03

ω3 2.60 3.53 1.30 0.12 0.12 0.20 0.02 0.07 0.01

ω4 6.38 4.51 0.57 0.29 0.02 0.11 0.04 0.00 0.00

ω5 8.60 0.85 0.21 0.39 0.11 0.08 0.06 0.02 0.00

ω6 12.94 0.13 1.87 0.37 0.22 0.01 0.00 0.01 0.01

ω7 21.79 1.42 1.45 0.27 0.01 0.05 0.03 0.04 0.00

ω8 68.04 5.83 2.25 0.39 0.31 0.14 0.07 0.03 0.01
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