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ABSTRACT
This work identifies damping parameters from compliant-

contact vibration systems using energy dissipation concept. To
develop the identification algorithms, the energy loss as
registered in the force-displacement relationship of the real
system is balanced against that of a theoretical model
incorporating with an idealized compliant contact. Two
approaches, including one based on the harmonic response
assumption and the other directly integrating the system
responses, are developed. Numerical investigations are
performed to illustrate the reliability of the identification
algorithms.

INTRODUCTION
Friction and damping estimation is of great importance to the

design, analysis, control, and stability prediction of machines,
cutting tools, vehicles and structures [1], some of which can be
very sensitive to the damping model [2-8]. Damping estimation
can be done by force measurement [9-11], damping coefficient
estimation, or general parameter estimation [12].

Long established vibration properties can be exploited for
damping estimation in free-response and forced-response
systems with viscous damping or Coulomb damping only.
Here, we continue a line of work on extracting Coulomb and
viscous friction parameters from free oscillation decrements
[13-15], and then forced oscillations by which analytical
solutions [16-18] are used to obtain estimation equations [19].
Limitations are that these methods are not applicable for
damping which is not “small,”they rely on analytical solutions
of single-degree-of-freedom linear systems, and they do not
treat friction models other than Coulomb and viscous (see for
example, references [8, 20-26]). As such, energy balancing is
potentially more generally applicable [27]. There are ways to
extend energy balancing to the estimation of damping in multi-
degree-of-freedom systems, as well [28-31].

In the previous energy-balance work, energy loss in the real

vibration systems was expressed in terms of a theoretical model
consisting of, for example, viscous and Coulomb friction, and
balanced against the input energy. The identification algorithms
were derived either by assuming the system with harmonic input
and output motion or by directly integrating the input and
output signals. These studies concentrate on the rigidly
grounded, or rigid-contact problems, such as Coulomb and
viscous [27,29], and viscous and quadratic [30].

In this paper, we apply the energy-dissipation identification
idea to compliant-contact problems. Many researchers have
reported compliance in friction contacts [2-10, 25]. Contact
compliance is sufficiently prevalent that a viable damping
estimation tool would be of value. This paper aims to add a
method to the set of tools for handling these problems. To
derive the identification algorithms, the energy dissipated in the
theoretical compliant model is introduced in the next section.

OSCILLATOR WITH AN IDEAL COMPLIANT CONTACT
Contact compliance could be caused by the asperity

deformations at the contact interfaces or by the elastic
deformation of the surrounding structures. A schematic diagram
which shows a base-excited, dual-damped oscillator with an
ideal massless compliant contact is presented in Figure 1, where

)(tx and )(ty indicate the displacements of sliding mass and
base excitation, )(tz denotes the displacement of the
hypothetical contact surface, zK represents the stiffness of the
contact joint, and )(tf models the friction force, which is
implicitly time dependent via dependence on )(tx , )(tx ,

)(ty , and )(tz .
The system shown in Figure 1 can have response that consists

of “macroscopic slipping” and“microsticking” phases [23]. A
schematic xf  diagram is presented in Figure 2 in which
both the macroscopic sliding phase (between points D, A and B,
C) and the microsticking phase (between points C, D and A, B)
are illustrated. We assume that the friction force is modeled as
Coulomb friction with equal static and kinetic friction
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coefficients. Hence, the following equation of motion can be
used during sliding:

tkYxFkxxcxm k cos)sgn(   (1)
where kF is the magnitude of the friction force.

Fig. 1 A schematic diagram showing a forced-compliant
oscillator with an idealized massless contact.

During the slipping phase, the ideal contact surface is
motionless, such that 0)(tz . The slipping motion continues
until a direction reversal, at which time microsticking begins at
time 1t . Once the microsticking phase commences, the model
changes to

tkYtzKkxxcxm z cos)(   (2)
tm XtxtxZtz   )())(sgn()( 1 (3)

in which mZ (a positive number equal to zk KF / ) is the
maximum deflection of the contact, and tX (a value with a
sign) is the displacement of the mass before microsticking starts.
If mX denotes the maximum displacement of the sliding mass
(a positive number), then mt XX  . Note that the motions of
the sliding mass and contact surface are identical during the
microsticking interval, such that )()( tztx   . This feature can
be observed in Eq. (3). The microsticking motion gives way
to slip when the magnitude of the restoring force )(tZK z is
greater than the friction force kF . At that moment, the next half
cycle of motion begins.

In what follows, the energy dissipated by the dual-damped
oscillator, with compliant contact, subjected to harmonic base
excitations is formulated.

ENERGY BALANCE WITH A COMPLIANT CONTACT
A typical force-velocity relationship of an idealized massless

compliant-contact model with a constant sliding friction
coefficient is shown in Figure 2, in which the hysteretic
structure represents the microsticking phenomenon that occurs
during the velocity reversals [23]. In Figure 2, points C, D, A,
B and time instants 1t , st , 2t , rt correspond to the onsets
of forward microstick, forward slip, backward microstick and
backward slip, respectively.

Accommodating such a compliant-contact model, the
analytical energy loss, dW , that would be dissipated during one
forcing cycle can be expressed as


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Assuming a symmetric response, the first and second integrals
are equal. For the case in which the sliding friction is
constant, the stored contact-spring energy between times 1t
and ts, in the first integral of equation (4), is returned between
times t2 and tr in the second integral. As such
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Fig. 2 A schematic diagram showing the xf  relationship
of the sliding mass with a compliant contact model
subjected to harmonic excitations.
Previous research [27,29,30] suggests that it is more simple

and accurate to use numerical integrals of equation (5), from
sampled time histories of y(t) and )(tx , than to use analytical
expressions derived from a harmonic response assumption.
However, the harmonic-motion formulation can be insightful
regarding the roles of amplitude, phase, and frequency in the
identification, sensitivities of identified parameters, and may
also be useful for implementation in some cases. In addition,
features of the system response subjected to harmonic
excitations also resemble harmonic functions [23]. Thus, we
will develop the identification scheme based on both simple
integration of signals, and the harmonic-response assumption.

THE DIRECT INTEGRATION APPROACH
The energy-balance identification process for the complaint

vibration systems can be implemented by directly integrating
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the input and response data numerically. The energy balance
of equation (5) can be written for several input/output
responses, )(tyi and )(txi , i = 1,…, n, as

aiiki WcbFa  (6)
where
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Given n = 2 independent steady-state input/output pairs,
)(tyi , )(txi and )(ty j , )(tx j , equation (6) represents two

independent equations in two unknowns, kF and c , which
can be solved to produce the following identification equations:




 djidij

kij

WbWb
F
~

(8a)




 dijdji

ij

WaWa
c~ (8b)

where ijji baba  . Note that the parameters a and b
have their counterparts in our previous study of rigid-contact
problems [27]. However, due to the effects of contact
compliance, the upper and lower limits of integration of
parameter“a”are different from those of [27].

Given multiple steady-state responses, and hence multiple
equations in (6), the parameters kF and c can be estimated
by a least-squares solution. That is, if a set of n equations (6)
is written in matrix form as

wpA 

where  Tk cFp  ,  Tanaa WWWw 21 , and A is

a matrix of coefficients
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The least squares solution is thus
wAAAp TT 1 )( . (9)

Given an estimate of kF , and measurements of maxX or

minX and sX or rX , we can estimate the contact stiffness as

kskrz FXXFXXK /)(/)( minmax  . (10)

ENERGY BALANCE BASED ON A HARMONIC-
RESPONSE ASSUMPTION

Assuming that )cos()(  tXtx and letting

 // 1t , we manipulate Eq. (5) to acquire
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or finally

22 )(2)(2 XcXXFXcXXFW rkskd   (13)

where sV , st , and sX are the velocity, time, and
displacement corresponding to the forward-slip transition, and

rV , rt , and rX are the velocity, time, and displacement
corresponding to the reverse-slip transition [23]. Note that

0sX and 0rX in equation (8), such that positive
quantities add up. In the limit of a rigid contact,

 //  1tts , and / 2ttr . Inserting into
equation (11),

  22 4cos12 XcXFXcXFW kkd  

from the st limit, and likewise from the rt limit, which is
consistent with energy dissipated from a rigid contact [27].

Furthermore, with the harmonic assumption, the applied
energy per cycle is

 sinkYXWa  (14)

Either Equation (11), (12) or (13) can be equated with
equation (14) in implementing the estimation process,
depending on whether sV , st , or sX is more accessible.
The algorithms derived based upon Equations (11)-(13) will be
designated as the compliant harmonic-response approach since
the harmonic-response approximation has been made.

Thus, if Eq. (13) is applied as the identification crux, after
equating dW in (13) to aW in (14) with two sets of
input/output data, the following estimation equations (for kF
and c) can be obtained:
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where sXXq 111  and sXXq 222  , (which can be
defined likewise based on the reverse slip transition,

irii XXq  ), and where the subscripts “1,2” denote two
different excitation levels and responses at the same frequency.
Unless the system possesses strong nonlinearity, the phase
angles between input and output corresponding to different
excitation levels at the same frequency can be assumed to be the
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same. Therefore,   21 , which leads to the following
approximate identification equations.
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Equations (16) describe the identification algorithms of the
compliant harmonic-response approach based on the forward
(or backward) slip displacement, sX (or rX ). Hence, we will
further denote Equations (16) as the compliant harmonic-
response- sX approach hereafter. Meanwhile, the superscript
“”is adopted to designate this perspective.

In fact, sX (or rX ) is not the only choice as the
identification crux. For example, if st , the time instant
corresponding to the forward slip is utilized as the identification
crux, the following identifying equation for kF can be
obtained
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where 1st and 2st indicate the time instants at which the
forward-slip events (that associate with two individual
excitation levels at the same frequency) take place. Again, if
the system possess weak nonlinearity, it may be reasonable to
apply a simplifying approximation sss ttt  21 , and

  21 . To this end, equation (18) can be further
simplified, and the two-point identification equations are
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The algorithms depicted in Equations (18) and superscripted
with “”are denoted as the compliant harmonic-response- st
approach.

Alternatively, if we adopt the forward-slip velocity, sV , as
the identification crux, the following pair of identification
equations is obtained

,
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where 2
1

2
111 sVXX  )( and 2

2
2

222 sVXX  )( .

The algorithms presented in Equations (19) are denoted as the
compliant harmonic-response- sV approach and superscripted

using“”.
Based on the derivations, the new identification methods

are divided into the compliant harmonic-response- sX , - st , and
- sV approaches, depending on whether sX , st , or sV is
applied. In the next section, we will validate these compliant
energy-balance methods with numerical examples. By
investigating the numerical systems with known parameters,
insights of these identification methods can be acquired, and the
effectiveness of the methods are revealed.

NUMERICAL INVESTIGATIONS
To conduct the numerical simulations, we adopted the

following system parameters: 42.2m kg, 0.90c N-
sec/m, 2310k N/m, 208000zK N/m, 28.1kF N
( 602.0 ). In order to understand the sensitivity of
estimation accuracy on the excitation frequency, three different
excitation frequencies were applied. They are 92.41  Hz,

5.32  Hz, and 1.113  Hz. Among these frequencies,

1 is equal to the undamped natural frequency of the system.

Table 1 shows the input/output amplitudes, the forward-slip
displacement, isX , velocity, isV , time instant, ist , and the
phase angles (between the input and output signal), i,
corresponding to 92.41  Hz, where the subscript “i ” 
denotes different excitation levels. To illustrate the process
which we apply to estimate isX , isV , and iX listed in Table
1, we plot the acceleration-displacement and acceleration-
velocity relationships in Figure 3. In Figure 3(b), a steeply
sloped straight-line structure appears, which depicts the
microsticking transition between two macroscopic sliding
phases. This microsticking transition is, in fact, a special
compliant-contact feature and can be used to estimate iX and

isX . In the same simulation, another compliant-contact feature,
emerging as a curved transition associated with a corner
structure, is presented in the acceleration-velocity plot, Figure
3(d). The corner structure in the acceleration-velocity plot
corresponds to the forward-slip onset velocity, isV . While it
is not shown here, quantities ist and i were determined
using time-domain signals, in which st was determined by
examining the time instant right after the abrupt jumps
appearing in the acceleration time trace [23], and i was
determined by measuring the time difference between
corresponding“zero crossings” occurred in the input and output
displacement signals.
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Figure 3: Simulation of the forced compliant oscillator
( 92.41  Hz), numerical versions of (a) the acceleration-
displacement plot, (b) zoom-in detail of the acceleration-
displacement plot, (c) the acceleration-velocity plot, and (d)
zoom-in detail of the acceleration-velocity plot.

Table 1: The input/output amplitudes and the motion-related
quantities required in implementing the compliant harmonic-
response identification process ( 92.41  Hz).

iY (m) iX (m) isX (m) isV (m/s) i(rad) ist (sec)

0.004 0.00273 -0.00272 0.00774 1.522 2.9E-3
0.006 0.00439 -0.00438 0.00995 1.536 2.3E-3
0.008 0.00605 -0.00604 0.01175 1.550 2.0E-3
0.010 0.00771 -0.00770 0.01330 1.552 1.7E-3
0.012 0.00937 -0.00936 0.01470 1.552 1.6E-3

Table 2: The numerical integration data and the damping
estimates obtained from the system by direct integration of the
energies from the signals. Pair-wise damping estimations are
also shown.

iY ia
ib

0.004 010885625.01 a 00072729.01 b

0.006 017525003.02 a 00187708.02 b

0.008 024164700.03 a 00356234.03 b

0.010 030804807.04 a 00578304.04 b

0.012 037445013.05 a 00853919.05 b


ijc~ diW 

kijF
~

0134.90~
12 
c 07939719.01 dW 279799.1

~
12 

kF

0114.90~
23 
c 19139123.02 dW 280015.1

~
23 

kF

0113.90~
34 
c 35158214.03 dW 280030.1

~
34 

kF

0115.90~
45 
c 55996992.04 dW 280003.1

~
45 

kF

0119.90~
15 
c 81655453.05 dW 279901.1

~
15 

kF

Table 3: The pair-wise estimates of damping parameters of the
numerical simulating system ( 92.41  Hz, 0.90c N-
sec/m, 28.1

~
kF N) obtained from the compliant harmonic-

response- st approach (denoted as 
kijF

~
and 

ijc~ ), the
compliant harmonic-response- sX approach (denoted as 

kijF
~

and 
ijc~ ) and the compliant harmonic-response- sV approach

(denoted as 
kijF

~
and 

ijc~ ).

ESTIMATION BASED ON DIRECT INTEGRATION OF
MEASURED SIGNALS

The integration data from equation (7) and damping
estimates obtained from the energy balance of equation (6) are
presented in Table 2. The integrations of energies were
performed with Simpson’s rule. The least-squares solution
based on the displayed data yields estimates 0115.90~ 

LSc
Ns/m and 279987.1

~


kLSF N. The root mean squared
residual, normalized by the vector w, was r = 9.1587e-07. The
superscript “”indicates the estimates obtained from the
direct-integration approach. These estimates can be directly
compared to those in obtained later by the harmonic response
assumption. Table 2 also shows the pair-wise estimates based on
equations (8). The means of the pair-wise estimates are

0119.90~ 
meanc Ns/m and 279950.1

~


kmeanF N, with
corresponding standard deviations of 0.00087 and 0.000098.


kijF

~
(N) 

ijc~ (N-sec/m) 
ijc~ (N-sec/m)

291.1
~

12 


kF 05.90~
12 
c 02.90~

12 
c

297.1
~

23 


kF 99.89~
23 
c 98.89~

23 
c

297.1
~

34 


kF 99.89~
34 
c 99.89~

34 
c

297.1
~

45 


kF 99.89~
45 
c 99.89~

45 
c

294.1
~

15 


kF 01.90~
15 
c 99.89~

15 
c


kijF

~
(N) 

kijF
~

(N) 
ijc~ (N-sec/m)

295.1
~

12 


kF 286.1
~

12 


kF 071.90~
12 
c

299.1
~

23 


kF 293.1
~

23 


kF 004.90~
23 
c

298.1
~

34 


kF 293.1
~

34 


kF 000.90~
34 
c

298.1
~

45 


kF 294.1
~

45 


kF 997.89~
45 
c

297.1
~

15 


kF 289.1
~

15 


kF 018.90~
15 
c



6 Copyright © 20xx by ASME

ESTIMATION BASED ON THE HARMONIC-RESPONSE
APPROXIMATION

The least squares approximations were obtained from the
values of Table 1 using sets of five balances of equations (11)-
(13) and (14) for each of the sX , - st , and - sV perspectives,
also using the individual (not averaged) values of st and .
The resulting estimations were 90.0402~ 

LSc Ns/m and
1.284786

~


kLSF N with a normalized residual of 5.03e-05 for
the sX perspective, 0396.90~* LSc Ns/m and

285022.1
~* kLSF N with a normalized residual of 4.98e-05 for

the st perspective, and 0392.90~ 
LSc Ns/m and

285163.1
~


kLSF N with a normalized residual of 4.97e-05 for

the sV perspective. The superscripts “”, “”and “”
denote the compliant harmonic-response- sX , - st and - sV
approaches, respectively.

Table 3 presents the estimated results separately obtained
from the compliant harmonic-response- sX , - st , and - sV
approximations by using the data listed in Table 1, and the mean
values of 3101.2 savgt and 542.1avg . In Table 3 all
of the damping estimates are close to the known data regardless
of the excitation level is high or low. The largest estimation
error of dry-friction force in the same table is less than 1.5%
among three different methods, whereas the largest estimation
error of viscous damping is less than 0.1%.

In order to understand how the new identification algorithms
perform in the off-resonance conditions, we simulated the
systems with 532 . Hz and 11.13 Hz. While not
shown here, the estimation accuracies of these two cases
degraded. For instance, the highest estimation error, in the

11.13 Hz case, was more than 70% which is unacceptable.

DISCUSSION AND CONCLUSIONS
Through comparison, we find that the accuracy of the

direct-integration approach is better than that of the compliant
harmonic-response approaches. A similar trend has also been
observed in our previous studies on the rigid-contact problems
[27, 29, 30]. However, harmonic-response assumption also
produced acceptable estimations. Assumptions used in least-
squares and two-point harmonic approximations include the
single harmonic. The two-point identification equations made
use of a mean ts and mean approximations, while the least
squares solutions used individual ts and values. Estimation
results were similar.

This paper demonstrates the estimation of damping
parameters from compliant-contact vibratory systems. An
energy balance was applied in two ways, namely by using
expressions based on a harmonic-response approximation, and
by direct numerical integration of the measured response
signals. These methods were developed based on the same
ideas that have been applied in previous investigations on rigid-
contact vibratory problems [27]. The characterization of
transition properties such as the velocity, displacement, and
time instant of the onsets of forward and backward stick and
slip associated with the compliant-contact system are involved

in the implementation of the identification methods.
According to the investigations, we find that the contact
compliance will not hinder the applicability of the estimation
methods when modeling details are accommodated.

Moreover, as with other studies, it is found that the harmonic-
response method works nicely when the system is excited near
resonance. The estimation accuracy, however, degrades when
the off-resonance excitations are met. The direct-integration
approach provides better accuracy in the numerical examples.
In implementation, the identification algorithms dealing with
the compliant-contact problems involve more modeling details
which in turn mandate more effort than with the rigid-contact
model. Nonetheless, estimation of damping in the compliant-
contact model is certainly feasible with the energy-balance
approach.
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