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ABSTRACT

This work identifies damping parameters from compliant-
contact vibration systems using energy dissipation concept. To
develop the identification algorithms, the energy loss as
registered in the force-displacement relationship of the real
system is balanced against that of a theoretica model
incorporating with an idealized compliant contact. Two
approaches, including one based on the harmonic response
assumption and the other directly integrating the system
responses, are developed. Numerical investigations are
performed to illustrate the reliability of the identification
algorithms.

INTRODUCTION

Friction and damping estimation is of great importance to the
design, analysis, control, and stability prediction of machines,
cutting tools, vehicles and structures [1], some of which can be
very sensitive to the damping model [2-8]. Damping estimation
can be done by force measurement [9-11], damping coefficient
estimation, or general parameter estimation [12].

Long established vibration properties can be exploited for
damping estimation in free-response and forced-response
systems with viscous damping or Coulomb damping only.
Here, we continue a line of work on extracting Coulomb and
viscous friction parameters from free oscillation decrements
[13-15], and then forced oscillations by which analytical
solutions [16-18] are used to obtain estimation equations [19].
Limitations are that these methods are not applicable for
damping which is not “small,” they rely on analytical solutions
of single-degree-of-freedom linear systems, and they do not
treat friction models other than Coulomb and viscous (see for
example, references [8, 20-26]). As such, energy balancing is
potentially more generally applicable [27]. There are ways to
extend energy balancing to the estimation of damping in multi-
degree-of-freedom systems, as well [28-31].

In the previous energy-balance work, energy loss in the real
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vibration systems was expressed in terms of a theoretical model
consisting of, for example, viscous and Coulomb friction, and
balanced against the input energy. The identification algorithms
were derived either by assuming the system with harmonic input
and output motion or by directly integrating the input and
output signals. These studies concentrate on the rigidly
grounded, or rigid-contact problems, such as Coulomb and
viscous [27,29], and viscous and quadratic [30].

In this paper, we apply the energy-dissipation identification
idea to compliant-contact problems. Many researchers have
reported compliance in friction contacts [2-10, 25]. Contact
compliance is sufficiently prevalent that a viable damping
estimation tool would be of value. This paper aims to add a
method to the set of tools for handling these problems. To
derive the identification agorithms, the energy dissipated in the
theoretical compliant model isintroduced in the next section.

OSCILLATOR WITH AN IDEAL COMPLIANT CONTACT

Contact compliance could be caused by the asperity
deformations at the contact interfaces or by the elastic
deformation of the surrounding structures. A schematic diagram
which shows a base-excited, dual-damped oscillator with an
ideal massless compliant contact is presented in Figure 1, where
x(t) and y(t) indicate the displacements of diding mass and
base excitation, 2z(t) denotes the displacement of the
hypothetical contact surface, K, represents the stiffness of the
contact joint, and f(t) models the friction force, which is
implicitly time dependent via dependence on x(t) , x(t),
y(t),and z(t).

The system shown in Figure 1 can have response that consists
of “macroscopic slipping” and “microsticking” phases [23]. A
schematic f —x diagram is presented in Figure 2 in which
both the macroscopic diding phase (between points D, A and B,
C) and the microsticking phase (between points C, D and A, B)
are illustrated. We assume that the friction force is modeled as
Coulomb friction with equal static and kinetic friction
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coefficients. Hence, the following equation of motion can be
used during diding:

mMX + cX+ kx+ F, sgn(x) = kY coswt (D)
where F, isthe magnitude of the friction force.
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Fig. 1 A schematic diagram showing a forced-compliant
oscillator with an idealized massless contact.

During the dipping phase, the ideal contact surface is
motionless, such that z(t) = 0. The slipping motion continues
until a direction reversal, at which time microsticking begins at
time t,. Once the microsticking phase commences, the model
changesto

mMX + cx+ kx+ K, z(t) = KY cosawt 2

2(t) = Z, syn(x(t; )) + X(t) - X, 3
in which Z_ (a postive number equal to F, /K,) is the
maximum deflection of the contact, and X, (a value with a
sign) is the displacement of the mass before microsticking starts.
If X, denotes the maximum displacement of the sliding mass
(a positive number), then X, =+£X,,. Note that the motions of
the diding mass and contact surface are identical during the
microsticking interval, such that x(t) = z(t) . This feature can
be observed in Eq. (3). The microsticking motion gives way
to slip when the magnitude of the restoring force K,Z(t) is
greater than the friction force F, . At that moment, the next half
cycle of motion begins.

In what follows, the energy dissipated by the dual-damped

oscillator, with compliant contact, subjected to harmonic base
excitations is formulated.

ENERGY BALANCE WITH A COMPLIANT CONTACT

A typical force-velocity relationship of an idealized massless
compliant-contact model with a constant dliding friction
coefficient is shown in Figure 2, in which the hysteretic
structure represents the microsticking phenomenon that occurs
during the velocity reversals [23]. In Figure 2, points C, D, A,
B and time instants t,, t,, t,, t, correspond to the onsets
of forward microstick, forward dip, backward microstick and
backward dlip, respectively.

Accommodating such a compliant-contact model, the
analytical energy loss, W, , that would be dissipated during one
forcing cycle can be expressed as

t, t+T 4+T
W, = [ f(Oxsgn(dt+ [ f(O)xsgn()dt+ [cxdt. (4)

4 t 4

Assuming a symmetric response, the first and second integrals
are equal. For the case in which the dliding friction is
constant, the stored contact-spring energy between times t,

and t, in the first integral of equation (4), is returned between

timest, and t, in the second integral. Assuch
t+T t+T t+T

W, = 2]2 F xsgn(X)dt + j cxxdt = 2 j F xsgn(X)dt + j cxxdt

to Y t, t

The dissipated energy is balanced against the applied input
ty +T
energy, W, = .[ky(t)th, such that te energy balance for the
ty
compliant oscillator during one cycleis W, =W, [23], or
Hy+T

t
W, = 2j F, xsgn(X)dt + j cxxdt
tg ty

4T t+T t+T
=2 [ Foksgn(idt+ ot =W, = [ky(t)xt (5)
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Fig. 2 A schematic diagram showing the f —x relationship

of the diding mass with a compliant contact model

subjected to harmonic excitations.

Previous research [27,29,30] suggests that it is more simple
and accurate to use numerical integrals of equation (5), from
sampled time histories of y(t) and x(t), than to use analytical

expressions derived from a harmonic response assumption.
However, the harmonic-motion formulation can be insightful
regarding the roles of amplitude, phase, and frequency in the
identification, senditivities of identified parameters, and may
also be useful for implementation in some cases. In addition,
features of the system response subjected to harmonic
excitations also resemble harmonic functions [23]. Thus, we
will develop the identification scheme based on both simple
integration of signals, and the harmonic-response assumption.

THE DIRECT INTEGRATION APPROACH

The energy-balance identification process for the complaint
vibration systems can be implemented by directly integrating
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the input and response data numerically. The energy balance
of equation (5) can be written for several input/output
responses, y(t) and x(t),i=1,...,n,as

aF +bc=W, (6)
where
t,
a = ZI %, sgn(x; )dt (79)
&
t+T
b= [%(t)dt. (7b)

t1

Given n = 2 independent steady-state input/output pairs,
yi(t), %() and y;(t), X;(t), equation (6) represents two
independent equations in two unknowns, F, and c, which
can be solved to produce the following identification equations:
e bdei _bIde
Wj = T

& - aWy —aWy

(7

A
where A=ab, —ah. Note that the parameters a and b
have their counterparts in our previous study of rigid-contact
problems [27]. However, due to the effects of contact
compliance, the upper and lower limits of integration of
parameter «“a” are different from those of [27].

Given multiple steady-state responses, and hence multiple
equations in (6), the parameters F, and c can be estimated

by aleast-squares solution. That is, if a set of n equations (6)
iswritten in matrix form as

(8a)

(8b)

Ap=w
where p=[F cf', w=Ww, W, .. W[ ,ad Ais

amatrix of coefficients

The least squares solution is thus
p=(A"ATAW. ©)
Given an estimate of F,, and measurements of X . or
and X, or X, ,we can estimate the contact stiffness as
K, =X = X ) F ==X = X )/ Fy. (10)

X

min
ENERGY BALANCE BASED ON A HARMONIC-
RESPONSE ASSUMPTION

Assuming  that X(t) = X cos(wt — @) and letting
t, =¢/w+n /o, wemanipulate Eq. (5) to acquire

W, = 2F, X (1- cos(wt, — ¢)) + CraX >
= 2F, X (L+ cos(ot, —@)) + craX (11

or

W, = 2F, X (1+/(@X)? V2 | @X) + CreoX 2
= 2F X (1+/(@X)? V. | @X) + CreoX 2 (12)

or finaly
W, = 2F, (X = X,) +CcrwX? = 2F, (X + X, ) + croX?  (13)

where V., t,, and X, ae the velocity, time, and

displacement corresponding to the forward-dip transition, and
V., t,, and X, are the velocity, time, and displacement
corresponding to the reverse-dip transition [23]. Note that
X,<0 and X, >0 in equation (8), such that positive
guantities add up. In the limit of a rigid contact,
t,ot=¢/lo+nlo, and t, >t,=¢/w . Inserting into

equation (11),
W, — 2F, X(1-cosz)+ crwX ? = 4F, X + craX 2

from the t, limit, and likewise from the t, limit, which is
consistent with energy dissipated from arigid contact [27].

Furthermore, with the harmonic assumption, the applied
energy per cycleis

W, = 7kYXsing (14)

Either Equation (11), (12) or (13) can be equated with
equation (14) in implementing the estimation process,
depending on whether V., t,, or X, is more accessible.
The algorithms derived based upon Equations (11)-(13) will be
designated as the compliant harmonic-response approach since
the harmonic-response approximation has been made.

Thus, if Eqg. (13) is applied as the identification crux, after
equating W, in (13) to W, in (14) with two sets of
input/output data, the following estimation equations (for F,
and c¢) can be obtained:

- 2 . _ 2 .
Es = aK(Y, X X5 smq)21 szlzxzsmq)z) ’ (158)
2(0,X; — 0, X7)
’é’A _ k(q1Y2X25in¢2 _q2Y1x15in¢1)
12 —
w(lezz - Qlez)

where g, =X;,-X,; and q,=X,—-X,,, (which can be
defined likewise based on the reverse dip transition,
g = X; + X,,), and where the subscripts “1, 2” denote two
different excitation levels and responses at the same freguency.
Unless the system possesses strong nonlinearity, the phase
angles between input and output corresponding to different
excitation levels at the same frequency can be assumed to be the

, (15b)
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same. Therefore, ¢, =¢, =¢ , which leads to the following
approximate identification equations.
';éz _ 7zkxlxzs|ng;)(Y1X2 —2Y2X1) (168)
2(q1X2 -0y X1 )
EA _ k5in¢(Q1Y2x2 _QZlel)
12 2 2 )
(0, X5 -0, X1)
Equations (16) describe the identification agorithms of the

compliant harmonic-response approach based on the forward
(or backward) slip displacement, X, (or X, ). Hence, we will

further denote Equations (16) as the compliant harmonic-
response- X, approach hereafter. Meanwhile, the superscript

“A” isadopted to designate this perspective.

(16b)

In fact, X, (or X,) is not the only choice as the
identification crux. For example, if t,, the time instant

corresponding to the forward dlip is utilized as the identification
crux, the following identifying equation for F, can be

obtained
o K(Y, X, sing, —Y, X, sing,)
K27 2 X, (1+ cosmty ) — X, (1+ cosmt )]

(17)

where t, and t,, indicate the time instants at which the

forward-dlip events (that associate with two individual
excitation levels at the same frequency) take place. Again, if
the system possess weak nonlinearity, it may be reasonable to
apply a simplifying approximation t, =t,=t. , and
¢, =¢d,=¢ . To this end, equation (18) can be further
simplified, and the two-point identification equations are

= Ksing(Y, X, - Y, X,)

= 18a
2 2(1+ cosat ) (X, — X,) (189

= _ ksing(Y, -Y,)

2= X, = X,) (18b)

The agorithms depicted in Equations (18) and superscripted
with  “* are denoted as the compliant harmonic-response-{
approach.

Alternatively, if we adopt the forward-dip velocity, V,, as

the identification crux, the following pair of identification
equations is obtained

= akoX,X,Sng(Y, X, —Y,X,)
e 2, X5 — 0, X7)

: (19a)

g = ksing(a,Y, X, —a,Y; X,)
" o(a; X3 —a,X{) .

(19b)

where o, =X, +4/(0X,)*-V3 and o, =X, +4/(@X,)*-V3 .
The algorithms presented in Equations (19) are denoted as the
compliant harmonic-response-V, approach and superscripted
using “o”.

Based on the derivations, the new identification methods
are divided into the compliant harmonic-response- X, -t,, and
-V, approaches, depending on whether X_, t., or V, is
applied. In the next section, we will validate these compliant
energy-balance  methods with numerical examples. By
investigating the numerical systems with known parameters,
insights of these identification methods can be acquired, and the
effectiveness of the methods are reveal ed.

NUMERICAL INVESTIGATIONS

To conduct the numerical simulations, we adopted the
following system parameterss m=242 kg, c¢=90.0 N-
sec/m, k=2310 N/m, K,=208000 N/m, F =128 N
(£=0602). In order to understand the sensitivity of

estimation accuracy on the excitation frequency, three different
excitation frequencies were applied. They are w, =4.92 Hz,

®, =35 Hz, and o,=11.1 Hz. Among these frequencies,
o, isequal to the undamped natural frequency of the system.

Table 1 shows the input/output amplitudes, the forward-dlip
displacement, X,,, velocity, Vi, time instant, t,, and the
phase angles (between the input and output signal), ¢, ,
corresponding to w, =4.92 Hz, where the subscript “i ”

denotes different excitation levels. To illustrate the process
which we apply to estimate X,;, V, and X; listed in Table
1, we plot the acceleration-displacement and acceleration-
velocity relationships in Figure 3. In Figure 3(b), a steeply
doped draight-line structure appears, which depicts the
microsticking transition between two macroscopic dliding
phases. This microsticking transition is, in fact, a specia
compliant-contact feature and can be used to estimate X, and
Xis- In the same simulation, another compliant-contact feature,

emerging as a curved transition associated with a corner
structure, is presented in the acceleration-velocity plot, Figure
3(d). The corner structure in the acceleration-velocity plot
corresponds to the forward-slip onset velocity, V... While it

is not shown here, quantities t, and ¢ were determined
using time-domain signals, in which t, was determined by

examining the time instant right after the abrupt jumps
appearing in the acceleration time trace [23], and ¢ was
determined by measuring the time difference between
corresponding “zero crossings” occurred in the input and output
displacement signals.
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Figure 3: Simulation of the forced compliant oscillator
(@, =4.92 Hz), numerical versions of (a) the acceleration-
displacement plot, (b) zoom-in detail of the acceleration-
displacement plot, (c) the acceleration-velocity plot, and (d)
zoom-in detail of the acceleration-vel ocity plot.

Table 1: The input/output amplitudes and the motion-related
guantities required in implementing the compliant harmonic-
response identification process (@, = 4.92 Hz).

Y (m)] Xi(m) | Xig(m) | Vig(/s) | ¢, (rad) |t (sec)

0.004 |0.00273 |-0.00272 |0.00774 |1.522 |(2.9E-3

0.006 |0.00439 |-0.00438 [0.00995 |1.536 |(2.3E-3

0.008 |0.00605 |-0.00604 [0.01175 |1.550 |(2.0E-3

0.010 |0.00771 |-0.00770 |0.01330 |1.552 |(1.7E-3

0.012 |0.00937 |-0.00936 [0.01470 |1.552 |(1.6E-3

Table 2: The numerical integration data and the damping
estimates obtained from the system by direct integration of the
energies from the signals. Pair-wise damping estimations are
also shown.

Y a h
0.004 a, = 0.010885625 |b, =0.00072729
0.006 a, =0.017525003 |b, = 0.00187708
0.008 a, =0.024164700 |b, = 0.00356234
0.010 a, = 0.030804807 |b, =0.00578304
0.012 a, =0.037445013 | b, =0.00853919

h

qj' Wdi

=

ij

C;, =90.0134 |W,, =0.07939719 |F,, = 1.279799

&, =90.0114 | W,, =0.19139123 | F, = 1.280015

G, =90.0113 | W, = 0.35158214 | F,r,, = 1.280030

Co =90.0115 | Wy, = 055996992 | F-,. = 1.280003

Cp; =90.0119 Wis = 0.81655453 | ., =1.279901

Table 3: The pair-wise estimates of damping parameters of the
numerical simulating system (o, =4.92 Hz, c=90.0 N-
sec/m, F, =128 N) obtained from the compliant harmonic-
response- t, approach (denoted as Fj and ¢ ), the
compliant harmonic-response- X approach (denoted as Fkﬁ.
and 6”4) and_the compliant harmonic-response-V, approach

(denoted as Fj and C;).

F (N) ¢ (N-sem)  |E (N-sec/m)
F, =1.291 ¢, =90.05 g5 =90.02
Fps =1.297 c;, =89.99 CA =89.98
Foe =1.297 c;, =89.99 ¢4 =89.99
Fprs =1.297 C.. =89.99 CA =89.99
s =1.294 C =90.01 G2 =89.99
Fag (N) Fo (N) & (N-sec/m)
i, =1.295 Fo, =1.286 ¢, =90.071
Fs =1.299 Fo, =1.293 ¢;, =90.004
Fa, =1.298 Fo,, =1.293 ¢;, =90.000
FA =1.298 Fos =1.294 C;. =89.997
FA =1.207 F —1.289 S = 90018

ESTIMATION BASED ON DIRECT INTEGRATION OF
MEASURED SIGNALS

The integration data from equation (7) and damping
estimates obtained from the energy balance of equation (6) are
presented in Table 2. The integrations of energies were
performed with Simpson’s rule. The least-squares solution
based on the_displayed data yields estimates €5 = 90.0115
Ns'm and F; =1.279987 N. The root mean sguared
residual, normalized by the vector w, was r = 9.1587e-07. The
superscript “ e ” indicates the estimates obtained from the
direct-integration approach. These estimates can be directly
compared to those in obtained later by the harmonic response
assumption. Table 2 also shows the pair-wise estimates based on
equations (8). The means of the pair-wise estimates are
Coean =90.0119 Ns/m and F;.,=1279950 N, with

kmean

corresponding standard deviations of 0.00087 and 0.000098.
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ESTIMATION BASED ON THE HARMONIC-RESPONSE
APPROXIMATION

The least sguares approximations were obtained from the
values of Table 1 using sets of five balances of equations (11)-
(13) and (14) for each of the X, -t, and -V, perspectives,
also using the individual (not averaged) values of t, and ¢.
The resulting estimations were s =90.0402 Ns/m and
Fos =1.284786 N with a normalized residual of 5.03e-05 for
the X,  perspective, C=90.0396 N¥m and
F.s =1.285022 N with a normalized residual of 4.98e-05 for
the t, perspective, and C3=90.0392 Nsm and
F.s =1.285163 N with a normalized residual of 4.97e-05 for
the V, perspective. The superscripts “A ™, “#*”and “o”
denote the compliant harmonic-response- X, -t, and -V,
approaches, respectively.

Table 3 presents the estimated results separately obtained
from the compliant harmonic-response- X, , -t,, and -V,
approximations by using the data listed in Table 1, and the mean
values of t,,, =21x10° and ¢,, =1.542. In Table 3 all
of the damping estimates are close to the known data regardless
of the excitation level is high or low. The largest estimation
error of dry-friction force in the same table is less than 1.5%
among three different methods, whereas the largest estimation
error of viscous damping islessthan 0.1%.

In order to understand how the new identification algorithms
perform in the off-resonance conditions, we simulated the
systems with @, =35 Hz and o, =111 Hz. While not
shown here, the estimation accuracies of these two cases
degraded. For instance, the highest estimation error, in the
o, =11.1 Hz case, was more than 70% which is unacceptable.

DISCUSSION AND CONCLUSIONS

Through comparison, we find that the accuracy of the
direct-integration approach is better than that of the compliant
harmoni c-response approaches. A similar trend has aso been
observed in our previous studies on the rigid-contact problems
[27, 29, 30]. However, harmonic-response assumption aso
produced acceptable estimations. Assumptions used in least-
squares and two-point harmonic approximations include the
single harmonic. The two-point identification equations made
use of a mean ts and mean ¢ approximations, while the least
squares solutions used individual ts and ¢ values. Estimation
results were similar.

This paper demonstrates the estimation of damping
parameters from compliant-contact vibratory systems. An
energy balance was applied in two ways, namely by using
expressions based on a harmonic-response approximation, and
by direct numerical integration of the measured response
signals. These methods were developed based on the same
ideas that have been applied in previous investigations on rigid-
contact vibratory problems [27]. The characterization of
transition properties such as the velocity, displacement, and
time instant of the onsets of forward and backward stick and
dip associated with the compliant-contact system are involved

in the implementation of the identification methods.
According to the investigations, we find that the contact
compliance will not hinder the applicability of the estimation
methods when modeling details are accommodated.

Moreover, as with other studies, it is found that the harmonic-
response method works nicely when the system is excited near
resonance. The estimation accuracy, however, degrades when
the off-resonance excitations are met. The direct-integration
approach provides better accuracy in the numerical examples.
In implementation, the identification algorithms dealing with
the compliant-contact problems involve more modeling details
which in turn mandate more effort than with the rigid-contact
model. Nonetheless, estimation of damping in the compliant-
contact model is certainly feasible with the energy-balance
approach.
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