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Definition of A Frame

In linear algebra, a frame of a vector space V with an inner
product can be seen as a generalization of the idea of a
basis to sets which may be linearly dependent.
A frame is a set {ek} of elements of V which satisfy the
so-called frame condition: There exist two real numbers, A
and B such that 0 < A ≤ B < ∞ and
A‖v‖2 ≤ ∑

k |〈v, ek 〉|2 ≤ B‖v‖2 for all v ∈ V .
This means that the constants A and B can be chosen
independently of v , only depend on the set {ek}.
The numbers A and B are called lower and upper frame
bounds. It can be shown that the frame condition is both
necessary and sufficient to form a set of dual frame vectors
{ẽk} with the following property:∑

k 〈v, ẽk 〉ek =
∑

k 〈v, ek 〉ẽk = v.
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Relation to Bases

If the set {ek} is a frame of V , it spans V . Otherwise there
would exist at least one non-zero v ∈ V which would be
orthogonal to all ek . If we insert v into the frame condition,
we obtain A‖v‖2 ≤ 0 ≤ B‖v‖2 ; therefore A ≤ 0, which is a
violation of the initial assumptions on the lower frame
bound.
If a set of vectors spans V, this is not a sufficient condition
for calling the set a frame.
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Types of Frames

Tight Frame: A frame is tight if the frame bounds A and B
are equal. This means that the frame obeys a generalized
Parseval’s identity. If A = B = 1, then a frame is either
called normalized or Parseval.
A frame is uniform if each element has the same norm:
∀k ‖ek‖ = c where c is a constant independent of k . A
uniform normalized tight frame with c = 1 is an orthonormal
basis.
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Dual Frame

The frame condition is both sufficient and necessary for
allowing the construction of a dual or conjugate frame,
{ẽk}, relative the original frame, {ek} The duality of this
frame implies that

∑
k 〈v, ẽk 〉ek =

∑
k 〈v, ek 〉ẽk = v

is satisfied for all v ∈ V .
Similarly, we can define the frame analysis operator, Φ,
and synthesis operators, Φ∗ (adjoint operator). It can then
be shown that:

< Φ∗a, f >=< a, Φf >=
∑

n

a[n] < f , φn >∗ (1)

If Φ is a frame operator, then Φ∗Φ is invertible and the
pseudo inverse is Φ+ = (Φ∗Φ)−1Φ∗.
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The pseudo inverse of a frame operator implements a
reconstruction with a dual frame.
Let {φn} be a frame with bounds 0 < A ≤ B, the dual
operator defined by Φ̃∗ = Φ+, has frame bounds
0 < 1

B ≤ 1
A .
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Example in R2

Let {g1, g2} be an orthonormal basis for a two-dimensional
plane.

Let φ1 = g1,φ2 = −g1/2 +
√

3
2 g2,φ3 = −g1

2 −
√

3
2 g2.

This is a tight frame with A = B = 3/2.
What’s a dual frame for this frame?
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Example in infinite dimensional space

Sinc Expansion: An example of an infinite-dimensional
tight frame is the generalized Shannon’s sampling
expansion. If a function is oversampled,
g(t) = TW

π

∑
n g(nT )sin((t−Tn)W )

(t−Tn)W .

Let RW = π
T for R ≥ 1 be the amount of oversampling,

then g(t) = 1
R

∑
n g(nT )

sin( π
RT (t−Tn))

π
RT (t−Tn) . The sinc functions

are no longer orthogonal or form a basis. They are a tight
frame.
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Summary

Frames are an overcomplete version of a basis set, and
tight frames are an overcomplete version of an orthogonal
basis set.
The frames and tight frames have a certain amount of
redundancy. In some cases, redundancy is desirable
giving a robustness to the representation. In other cases,
redundancy is an inefficiency.
In finite dimensions, vectors can be removed from a frame
to get a bases, but in infinite dimensions, that is not
possible.



Frames and Overcomplete Dictionaries

Sparsity in Redundant Dictionaries

Complex signals such as audio recordings or images often
include structures that are not well represented by few
vectors in any single basis.
Large dictionaries incorporating more patterns can
increase sparsity and thus improve applications to
compression, denoising, inverse problems and pattern
recognition.
Finding the set of M dictionary vectors that approximate a
signal with a minimum error is NP-hard in redundant
dictionaries.
There is a need for ”good” but nonoptimal approximations
using computational algorithms.
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Best M-Term Approximations

Let D = {φp}p ∈ Γ be a dictionary of P unit norm vectors in
a signal space CN .
We study sparse approximations of f .
Types of dictionaries include combination of orthonormal
basis (Fourier basis and Dirac delta basis, wavelets and
DCT),Gabor dictionary.
A time and frequency translation-invariant Gabor dictionary
is constructed by scaling, modulating and translating a
Gaussian window on the signal-sampling grid:
gj [n] = Kj2−j/2+1/4exp(−π(2−jn)2).Dj,∆ = {φp[n] =
gj [n − quj ] exp(iεjkn)} where uj = 2j∆−1 and
εj = 2π∆−12−j .
To get a frame,∆ > 1. A multiscale Gabor dictionary is a
union of such frames D∆ = ∪log2 N−k

j=k Dj,∆.
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Greedy Matching Pursuits [Mallat and Zhang]

Pursuit strategies construct nonoptimal yet efficient
approximations.
Matching pursuits are greedy algorithms that select the
dictionary vectors one by one.
Let D = {φp}p ∈ Γ be a dictionary of P unit norm vectors
with P > N. This dictionary has to be complete, which
means it includes N linearly independent vectors that
define a basis for the signal space.
Algorithm:

1 Let R0f = f .
2 At each step find φpk = argmaxφp∈D| < Rk f , φp > |
3 The residue at the next step is

Rk+1f = Rk f− < Rk f , φpk > φpk . Rk+1f and φpk are
orthogonal, which implies
‖Rk f‖2 = | < Rk f , φpk > |2 + ‖Rk+1f‖2.
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After M iterations, we get
f =

∑M−1
k=0 < Rk f , φpk > φpk + RM f .

Matching pursuit has exponential decay.
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Orthogonal Matching Pursuit (OMP)

Matching pursuit approximations are improved by
orthogonalizing the directions of projection with a
Gram-Schmidt procedure.
OMP converges with a finite number of iterations.
In matching pursuit, the vector φpk selected is a priori not
orthogonal to the previously selected atoms (vectors).
When subtracting the projection of Rk f over φpk , the
algorithm reintroduces new components in the directions
{φpl}0 ≤ l < k . OMP avoids this by projecting residues on
an orthogonal family obtained from the selected atoms.
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OMP Algorithm

1 Let R0f = f .
2 At each step k, find φpk = argmaxφp | < Rk f , φp > |.
3 Build a matrix of chosen atoms, Φk+1 = [Φkφpk ].
4 Solve a least squares problem,

xk+1 = argminx‖Φk+1x − f‖2.
5 Find the new approximation and the new

residue:Rk+1f = f − Φk+1xk+1.
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l1 Pursuits (Basis Pursuit)

To reduce inefficiencies produced by the greediness of
matching pursuits, l1 pursuits perform a more global
optimization by replacing l0 norm minimization by an l1
norm.
Matching pursuits and basis pursuit can compute nearly
optimal M-term approximations.
Each step of matching pursuit performs a local
optimization. A basis pursuit minimizes a global criterion.
Basis pursuit introduced by Chen and Donoho finds the
vector ã of coefficients having a minimum l1 norm:
ã = argmina‖a‖1subjecttoΦ∗a = f , where Φ is the matrix
with columns corresponding to the elements of the
dictionary.
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Basis pursuit solves a convex minimization that can be
written as a linear programming algorithm. It is
computationally more intensive than matching pursuit.
Basis pursuit selects vectors that are independent
(chooses the best basis).
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Comparison of BP and MP

Given a signal with a representation x = Dα, if
‖α‖0 < threshold BP and MP are guaranteed to find it.
BP and MP are different in general.



Frames and Overcomplete Dictionaries

Uniqueness of Sparse Representation

Definition 1: Given a dictionary matrix D, σ = Spark(D) is
the smallest number of columns from D that are linearly
dependent.
Generally, 2 ≤ σ ≤ Rank(D) + 1.
For any pair of representations of x,x = Dγ1 = Dγ2 implies
that D(γ1 − γ2) = 0,‖γ1 − γ2‖0 ≥ σ.
Any two different representations of the same x cannot be
jointly too sparse the bound depends on the properties of
the dictionary.
If we found a representation that satisfies ‖γ‖0 < σ

2 , then it
is the unique sparsest solution among all solutions with
probability 1.
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Definition 2: Mutual incoherence is defined as
M = max1≤k ,j≤L| < φk , φj > |.
It has been shown that a lower bound on the spark is given
by σ ≥ 1 + 1

M .
It has been shown that assuming
‖gamma‖0 < 0.5(1 + 1/M), BP is Guaranteed to find the
sparsest solution. This suggests that l1 norm optimization
can recover sparsest representation.
The same result holds for MP.
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Dictionary Learning

For a given dictionary size, the dictionary should be
optimized to best approximate signals. Dictionaries can be
optimized by better taking into account the signal
properties derived from examples (learning from training
data).
Consider a family of K signal examples, {fk}0≤k<N . We
want to find a dictionary D = {φp} of size P in which each
fk has an optimally sparse approximation f̃k =

∑
a[k , p]φp.

The approximation vector can be written as f̃ = AΦ.
Define Frobenius norm of f as ‖f‖2

F =
∑N−1

k=0 ‖fk‖2.
The algorithm alternates between the calculation of the
matrix of sparse signals coefficients A and a modification
of the dictionary vectors to minimize the Frobenius norm of
the residual error, ‖f − AΦ‖2

F .
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Learning Algorithm (Engan et al.)

1 Initialization: Each vector φp is initialized as a white
Gaussian noise with norm 1.

2 Sparse approximation: Calculation with a pursuit of the
matrix, A, of sparse approximation coefficients.

3 Dictionary Update: Minimization of the residual error with
Φ = A+f = (A∗A)−1A∗f .

4 Dictionary Normalization: Normalize each row of Φ.
5 Stopping Criterion: After a fixed number of iterations, or if

Φ is marginally modified, then stop. This algorithm is
computationally very intensive.
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K-SVD (Aharon et al.)

K-SVD is another method to learn the dictionary from
training data and is a generalization of k-means.

1 Initialization: Set the initial dictionary, D (normalized).
2 For each column, k = 1, 2, . . . , P of the dictionary, define

the group of examples that use this column:
omegak = {i |1 ≤ i ≤ Na[i , p] 6= 0}.

3 Compute the overall representation error matrix, Ek :
Ek = F −∑

j 6=k φjAj .
4 Restrict Ek by choosing only the columns corresponding to

ωk and obtain ER
k .

5 Apply SVD to ER
k = U∆V T . Choose the updated dictionary

column d̃k to be the first column of U. Update the
coefficient vector.

6 Iterate until the stopping criterion is satisfied.


