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Outline 

ü Thermochemical storage system based on elemental sulphur 

ü Oxide-based materials 

Á Non-modified proppants synthesized by Baltic Ceramics (BCR) 

Á Particles synthesized by APTL 

ü Physico-chemical characterization   

ü Setup for catalytic activity measurements 

ü Results on catalytic activity 

ü Conclusions and next steps 



ü  The concept combines: 

Á Solid particles as heat transfer fluid, also used 
for direct thermal (sensible) energy storage  

Á Solid sulphur used for indirect thermo-
chemical storage of solar energy 

 

 

ü  Advantages of the sulphur energy storage scheme 

V Very high energy density: approx. 12,500 kJ/kg cf. 300 kJ/kg for molten salts 

V Cost-effective material (<60 ϵ/tn cf. ~400 ϵ/tn for molten salts) and cheaply stored in piles under ambient conditions 

V Constant temperature heat recovery and possibility for higher temperature stored energy retrieval cf. original heat input 

Process concept scheme 



üSulphuric acid splitting/decomposition 

Reaction set 
Temperature 

(oC) 
ɲH 

(kJ/mol) 

i) 2H2SO4(aq) Ҧ н{h3(g) + 2H2O(g)  450-500 
560 

ii) 2SO3(g) Ҧ н{h2(g) + O2(g) 800-900 

Á CSP exploitation step 

Á Energy intensive (endothermic) step 

Á Reaction set: i) non-catalytic, 100% splitting; ii) 
requires catalyst 

Á Solar receiver design requires particles as catalyst 

Process diagram 
 



       600oC 

Á CuO-V2O5/SiO2, Ce-V/SiO2 

Á CuV/SiO2 

 

 

Á Pt/Al2O3 

 

Á Fe2O3-based, Cu-Fe-Al, Fe-Cr 

  

      1000oC 

 

ü Reaction thermodynamics require temperatures >600oC, especially at high SO3 content 
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ü Materials synthesized by both BCR and APTL 

ü APTL synthesized oxides rich in Fe2O3, the rest mainly aluminosilicates (Al-Si) 

V Dry (or slurry) mechanical mixing of oxides ­ wetting ­ shaping by applying rotary forces ­ drying ­ 

calcination 

ü Near spherical with size range 425 - 1700 ˃ m (BCR), 700 - 1400 ˃ Ƴ (APTL) 

ü Density: ~2 g/ml 

ü Demand for high thermo-mechanical strength & resistance to chemically harsh environment 

ü Particles color black or blackish 

V Achievement of high solar-irradiation absorption 

Oxide-based solid particles 
 

BCR proppants APTL particles 



List of evaluated solid particles 
 

Sample Main Secondary  

BCR-1 

Bauxite 
Manganese oxide, 
Iron oxide 

BCR-2/BCR-3 

BCR-4 

BCR-5/BCR-6 

BCR-7 Bauxite 
Iron oxide, 
Manganese oxide 

Samples Main Secondary 

APTL-1/APTL-2 
Commercial Iron 
oxide 

APTL-3/APTL-4 
Commercial Iron 
oxide Aluminosilicate 

APTL-5/APTL-6 
Iron oxide-rich steel 
industry byproduct 

Aluminosilicate 
residuals 

üGrouped samples 
Á BCR: Same compositions, different particle sizes 
V BCR-2, BCR-5, BCR-7 ­ bigger p.s. 

Á APTL: Same compositions, different calcination temperatures 
V APTL-1, APTL-3, APTL-5 ­ low calcination temperature 
V APTL-2, APTL-4, APTL-6 ­ high calcination temperature  



üApplied techniques: 

ÁScanning Electron Microscopy (SEM) 

ÁX-Ray Diffraction (XRD) 

ÁHg porosimetry 

ÁSurface area (BET) by liquid N2 adsorption 

ÁCrushing strength measurements 

Physico-chemical characterization 
 



ü Results very similar for all 425-850 ˃ m samples 

üMajor elements identified by EDS: Al, Mn, Si, O. Also present: Ca, Ti & Fe 

BCR-1 425-850˃ Ƴ BCR-3 425-урл˃Ƴ BCR-4 425-урл˃Ƴ BCR-6 425-урл˃Ƴ 

x40 x40 x40 x40 

x100 x100 x100 x100 

Al: 74 wt.% 

Si: 6 wt.% 

Mn: 18 wt.% 

Al: 66 wt.% 

Si: 12 wt.% 

Mn: 18 wt.% 

Al: 75 wt.% 

Si: 12 wt.% 

Mn: 11 wt.% 

Al: 68 wt.% 

Si: 8 wt.% 

Mn: 22 wt.% 

BCR samples - SEM analysis 


