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Outline 

 Thermochemical storage system based on elemental sulphur 

 Oxide-based materials 

  Non-modified proppants synthesized by Baltic Ceramics (BCR) 

  Particles synthesized by APTL 

 Physico-chemical characterization   

 Setup for catalytic activity measurements 

 Results on catalytic activity 

 Conclusions and next steps 



  The concept combines: 

 Solid particles as heat transfer fluid, also used 
for direct thermal (sensible) energy storage  

 Solid sulphur used for indirect thermo-
chemical storage of solar energy 

 

 

  Advantages of the sulphur energy storage scheme 

 Very high energy density: approx. 12,500 kJ/kg cf. 300 kJ/kg for molten salts 

 Cost-effective material (<60 €/tn cf. ~400 €/tn for molten salts) and cheaply stored in piles under ambient conditions 

 Constant temperature heat recovery and possibility for higher temperature stored energy retrieval cf. original heat input 

Process concept scheme 



 Sulphuric acid splitting/decomposition 

Reaction set 
Temperature 

(oC) 
ΔH 

(kJ/mol) 

i) 2H2SO4(aq) → 2SO3(g) + 2H2O(g)  450-500 
560 

ii) 2SO3(g) → 2SO2(g) + O2(g) 800-900 

 CSP exploitation step 

 Energy intensive (endothermic) step 

 Reaction set: i) non-catalytic, 100% splitting; ii) 
requires catalyst 

 Solar receiver design requires particles as catalyst 

Process diagram 
 



       600oC 

 CuO-V2O5/SiO2, Ce-V/SiO2 

 CuV/SiO2 

 

 

 Pt/Al2O3 

 

 Fe2O3-based, Cu-Fe-Al, Fe-Cr 

  

      1000oC 

 

 Reaction thermodynamics require temperatures >600oC, especially at high SO3 content 

SO3 decomposition catalysts state of the art 
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 Materials synthesized by both BCR and APTL 

 APTL synthesized oxides rich in Fe2O3, the rest mainly aluminosilicates (Al-Si) 

 Dry (or slurry) mechanical mixing of oxides  wetting  shaping by applying rotary forces  drying  

calcination 

 Near spherical with size range 425 - 1700 μm (BCR), 700 - 1400 μm (APTL) 

 Density: ~2 g/ml 

 Demand for high thermo-mechanical strength & resistance to chemically harsh environment 

 Particles color black or blackish 

 Achievement of high solar-irradiation absorption 

Oxide-based solid particles 
 

BCR proppants APTL particles 



List of evaluated solid particles 
 

Sample Main Secondary  

BCR-1 

Bauxite 
Manganese oxide, 
Iron oxide 

BCR-2/BCR-3 

BCR-4 

BCR-5/BCR-6 

BCR-7 Bauxite 
Iron oxide, 
Manganese oxide 

Samples Main Secondary 

APTL-1/APTL-2 
Commercial Iron 
oxide 

APTL-3/APTL-4 
Commercial Iron 
oxide Aluminosilicate 

APTL-5/APTL-6 
Iron oxide-rich steel 
industry byproduct 

Aluminosilicate 
residuals 

 Grouped samples 
 BCR: Same compositions, different particle sizes 

 BCR-2, BCR-5, BCR-7  bigger p.s. 
 APTL: Same compositions, different calcination temperatures 

 APTL-1, APTL-3, APTL-5  low calcination temperature 
 APTL-2, APTL-4, APTL-6  high calcination temperature  



Applied techniques: 

 Scanning Electron Microscopy (SEM) 

 X-Ray Diffraction (XRD) 

 Hg porosimetry 

 Surface area (BET) by liquid N2 adsorption 

 Crushing strength measurements 

Physico-chemical characterization 
 



 Results very similar for all 425-850 μm samples 

 Major elements identified by EDS: Al, Mn, Si, O. Also present: Ca, Ti & Fe 

BCR-1 425-850μm BCR-3 425-850μm BCR-4 425-850μm BCR-6 425-850μm 

x40 x40 x40 x40 

x100 x100 x100 x100 

Al: 74 wt.% 

Si: 6 wt.% 

Mn: 18 wt.% 

Al: 66 wt.% 

Si: 12 wt.% 

Mn: 18 wt.% 

Al: 75 wt.% 

Si: 12 wt.% 

Mn: 11 wt.% 

Al: 68 wt.% 

Si: 8 wt.% 

Mn: 22 wt.% 

BCR samples - SEM analysis 



 Main phases: alumina & aluminosilicates. Small amounts of Fe2O3, Mn2O3 & FeTi2O5 

BCR samples - XRD analysis 
 



 Results similar for all samples 
 APTL-3/APTL-4 & APTL-5/APTL-6 have the same compositions but different calcination temperature 

 Higher calcination temperature  more sintered structures 

 Major elements (EDS): Fe, Al, Si 

APTL-3 APTL-4 APTL-5 APTL-6 

x40 x60 x40 x60 

x150 x150 x150 x150 

Fe: 69% wt 

Al:  13 % wt 

Si: 18 % wt 

Fe: 72% wt 

Al: 10 % wt 

Si: 18 % wt 

Fe: 64% wt 

Al: 15 % wt 

Si: 21 % wt 

Fe: 74% wt 

Al: 10 % wt 

Si: 17 % wt 

APTL samples - SEM analysis 

x50 



 Main phase: Fe2O3. Small amounts of SiO2 in all but APTL-1 (pure iron oxide) 

 Relatively low crystallinity & absence of clear Al2O3 & Al-Si-O peaks 

APTL samples - XRD analysis 
 



 No specific surface area (BET measurements) for BCR proppants 

 Low specific area in APTL samples (~0 for high calcination temperatures, ~5 m2/g for 

lower) 

 No appreciable porosity by Hg-porosimetry in BCR proppants (if any, < 5%) 

Hg porosimetry & BET Surface Area measurements (BCR and APTL) 
 



 Quartz tube reactor filled with quartz beads (left side) and quartz wool (right side). Particles in 

fixed bed formulation 

 SO2 analysis in a heated (210oC) quartz cuvette by UV-Vis spectrometry 

Setup for catalytic activity measurements 
 



 Experimental conditions set for the preliminary tests 
 Reaction temperature: 850oC, selected samples at 800-900oC 

 Pressure: 1 bar 

 Feed: conc. sulfuric acid (98%), 0.12 ml/min 

 GHSV = 25,000 - 50,000 h-1  

 Catalyst quantity per test: 1 g, selected samples 2 g 

 Dilution of reactor outlet with N2 flow to achieve measurable SO2 concentration values 

 On-stream exposure per test: approx. 60 min 

Experimental conditions 
 



  Decomposition reaction (SO3 conversion to SO2) 

 

 

 

 

 

 

 

 

 Gas-phase SO3 dissociation (blank)  conversion of approx. 5% 

 BCR proppants  relatively low performance, no significant effect of p.s. Absence of catalytically active phases 

 APTL particles (rich in Fe2O3) much higher efficiency 

 Samples calcined at lower temperature (APTL-1, APTL-3, APTL-5) more active cf. the ones calcined at high temperature 

 Pure Fe2O3 calcined at high temperature significant conversion decrease (<10%)   withstood in composite cases 

Evaluation results 
 



  Crushing Strength measurements of particles after decomposition experiments 

 

 

 

 

 

 

 

 

 

 

 CS for the case of BCR proppants reduced by >50% after 60 min of exposure (>>100N before test), still high  

 Independent of p.s. for BCR proppants, remains approx. same 

 

Structural stability performance – BCR proppants 
 

 Indicative post-experimental photos  samples unharmed 



  Crushing Strength measurements of particles before & after decomposition experiments 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Structural stability performance – APTL particles  
 

 APTL particles tend to have almost unchanged CS after test, if not 
increased 

 Due to sintering phenomena, samples calcined at high temperature 
(APTL-2, APTL-4, APTL-6) have higher structural stability than the 
same ones calcined at low temperature (APTL-1, APTL-3, APTL-5) 

 APTL-4 seems to have the in-principle most promising compromise 
between SO3 conversion and CS 

 Indicative post-experimental photos  samples unharmed 



 Extremely high mechanical integrity leads to low catalytic activity in the proppants 

 Lack of sufficient catalytically active phases 

 Low to negligible surface areas  seems not to play a major role in the SO3 conversion 

 APTL-4 most promising material so far 

  Commercial Fe2O3/Aluminosilicate composite 

  Combines blackish color, SO3 conversion > 40% and CS > 20 N  However, s.o.a catalysts higher conversion 

 Both approaches should be combined to create modified proppants relatively rich in catalytically 

active phases (e.g. Fe2O3, CuO etc.)  

 Need to find optimum compromise between catalytic activity and mechanical integrity 

 Challenging conditions in the solar receiver 

 Particles constantly circulated within the relevant steps of the integration process  

 Encouraging first results towards this direction 

 

 

 

 

 

 

 

 

Conclusions & future improvements 
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