

International Workshop on Solar Thermochemistry September 12-14, 2017, Jülich, Germany

Composite particles as active catalysts for the SO_3 dissociation reaction of the thermochemical storage scheme based on elemental sulphur

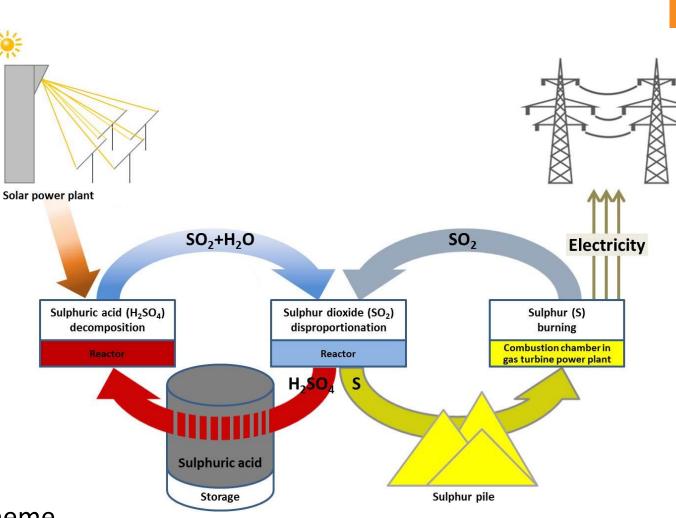
<u>Nikolaos I. Tsongidis^{1,2}, Kyriaki G. Sakellariou^{1,2}, George Karagiannakis¹,</u>

Chrysoula Pagkoura¹, Athanasios G. Konstandopoulos^{1,2}

¹ Aerosol & Particle Technology Laboratory, CPERI/CERTH, Thessaloniki, Greece ² Department of Chem. Eng., Aristotle University, Thessaloniki, Greece

Acknowledgments

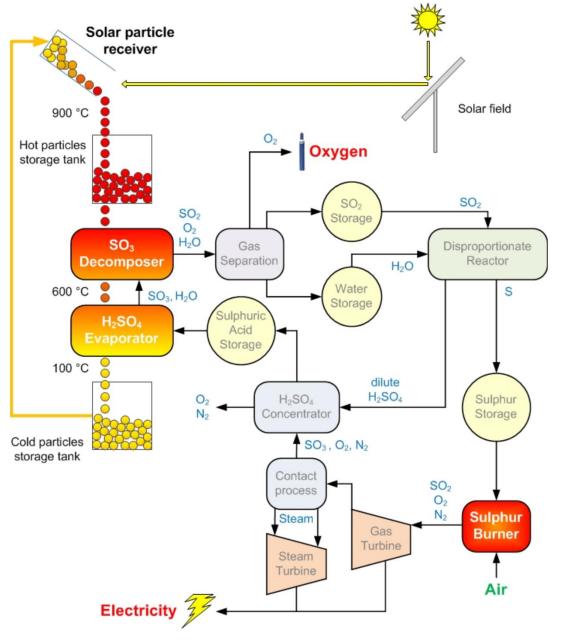
The European Commission for funding of this work through the Horizon 2020 project *PEGASUS (G.A. No: 727540)*



Outline

- > Thermochemical storage system based on elemental sulphur
- Oxide-based materials
 - Non-modified proppants synthesized by Baltic Ceramics (BCR)
 - Particles synthesized by APTL
- Physico-chemical characterization
- > Setup for catalytic activity measurements
- Results on catalytic activity
- Conclusions and next steps

Process concept scheme


- The concept combines:
 - Solid particles as heat transfer fluid, also used for direct thermal (sensible) energy storage
 - Solid sulphur used for indirect thermochemical storage of solar energy

Advantages of the sulphur energy storage scheme

- ✓ Very high energy density: approx. 12,500 kJ/kg cf. 300 kJ/kg for molten salts
- ✓ Cost-effective material (<60 €/tn cf. ~400 €/tn for molten salts) and cheaply stored in piles under ambient conditions
- ✓ Constant temperature heat recovery and possibility for higher temperature stored energy retrieval cf. original heat input

Process diagram

Sulphuric acid splitting/decomposition

Reaction set	Temperature (°C)	ΔH (kJ/mol)
$2H_2SO_{4(aq)} \rightarrow 2SO_{3(g)} + 2H_2O_{(g)}$	450-500	560
$2SO_{3(g)} \rightarrow 2SO_{2(g)} + O_{2(g)}$	800-900	500

CSP exploitation step

i)

ii)

- Energy intensive (endothermic) step
- Reaction set: i) non-catalytic, 100% splitting; ii) requires catalyst
- Solar receiver design requires particles as catalyst

SO₃ decomposition catalysts state of the art

600°C

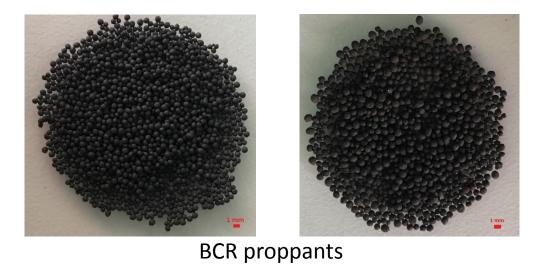
- CuO-V₂O₅/SiO₂, Ce-V/SiO₂
- CuV/SiO₂

- Pt/Al₂O₃
- Fe₂O₃-based, Cu-Fe-Al, Fe-Cr

1000°C

- Kawada, T. et al., 2014, Hydrothermal synthesis of CuV₂O₆ supported on mesoporous SiO₂ as SO₃ decomposition catalysts for solar thermochemical hydrogen production, Int. J. Hydrogen Energy 39, 20646-20651
- Kawada, T. et al., 2015, Structure and SO₃ decomposition activity of nCuO-V₂O₅/SiO₂ (n=0,1,2 and 5) catalysts for solar thermochemical water splitting cycles, Catal. Today 242, 268-273

- Kawada, T. et al., 2015, Structure and SO₃ decomposition activity of CeVO₄/SiO₂ catalysts for solar thermochemical water splitting cycles, Int. J. Hydrogen Energy 40, 10726-10733


- Karagiannakis, G. et al., 2011, Hydrogen production via sulfur-based thermochemical cycles: Part 1: Synthesis and evaluation of metal oxide-based candidate catalyst powders for the sulfuric acid decomposition step, Int. J. Hydrogen Energy 36, 2831-2844

- Giaconia, A. et al., 2011, Hydrogen production via sulfur-based thermochemical cycles: Part 2: Performance evaluation of Fe_2O_3 -based catalysts for the sulfuric acid decomposition step, Int. J. Hydrogen Energy 36, 6496-6509

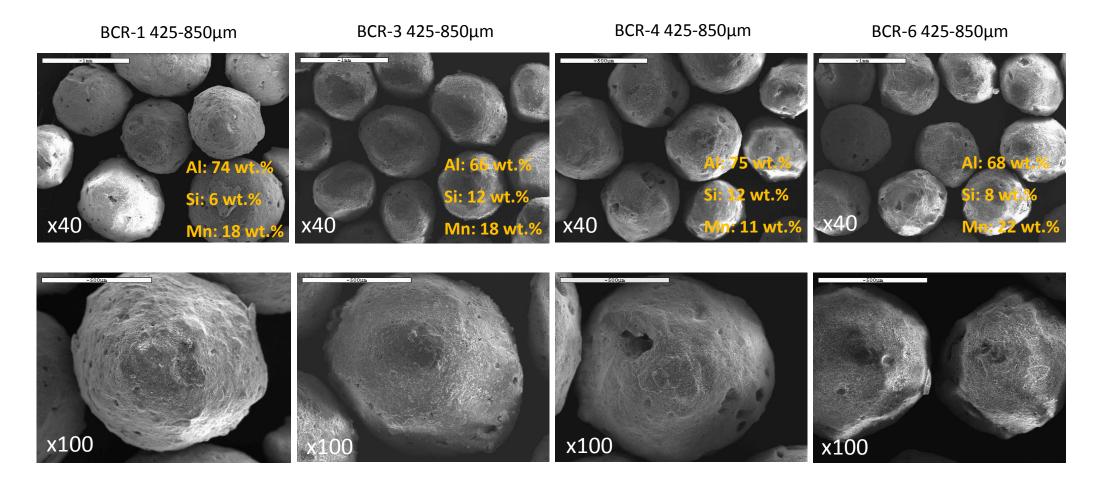
 \blacktriangleright Reaction thermodynamics require temperatures >600°C, especially at high SO₃ content

Oxide-based solid particles

- Materials synthesized by both BCR and APTL
- > APTL synthesized oxides rich in Fe_2O_3 , the rest mainly aluminosilicates (Al-Si)
 - ✓ Dry (or slurry) mechanical mixing of oxides → wetting → shaping by applying rotary forces → drying → calcination
- > Near spherical with size range 425 1700 μ m (BCR), 700 1400 μ m (APTL)
- Density: ~2 g/ml
- > Demand for high thermo-mechanical strength & resistance to chemically harsh environment
- Particles color black or blackish
 - ✓ Achievement of high solar-irradiation absorption

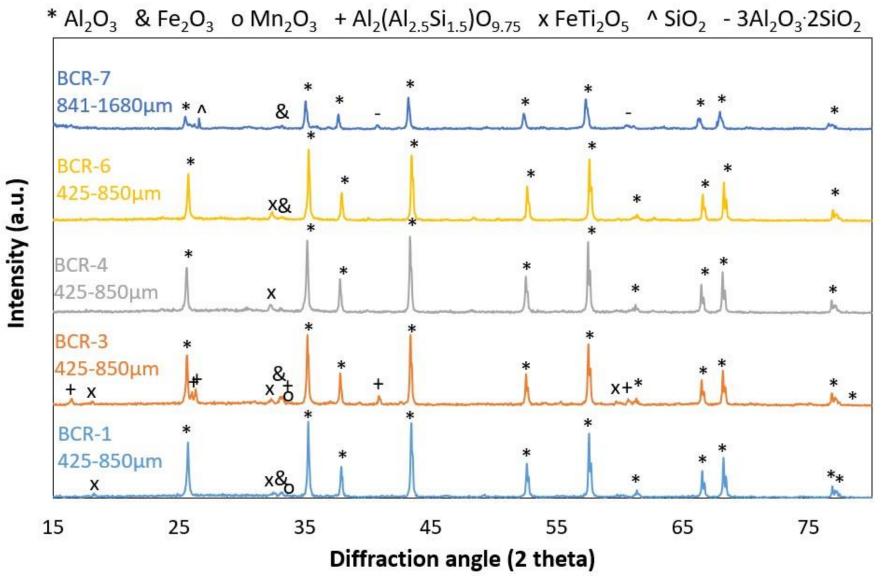
APTL particles

List of evaluated solid particles

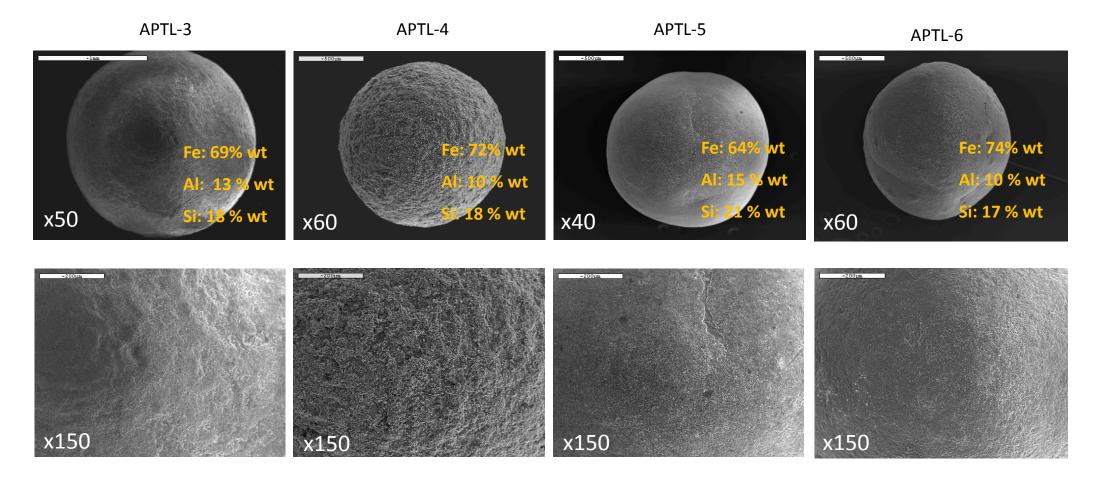

Sample	Main	Secondary		Samples	Main	Secondary
BCR-1	Bauxite	Manganese oxide, Iron oxide		APTL-1/APTL-2	Commercial Iron	
BCR-2/BCR-3					oxide	
BCR-4				APTL-3/APTL-4	Commercial Iron oxide	Aluminosilicate
BCR-5/BCR-6						
BCR-7	Bauxite	Iron oxide, Manganese oxide		APTL-5/APTL-6	Iron oxide-rich steel industry byproduct	Aluminosilicate residuals

- Grouped samples
 - BCR: Same compositions, different particle sizes
 - ✓ BCR-2, BCR-5, BCR-7 → bigger p.s.
 - APTL: Same compositions, different calcination temperatures
 - ✓ APTL-1, APTL-3, APTL-5 → low calcination temperature
 - ✓ APTL-2, APTL-4, APTL-6 → high calcination temperature

Physico-chemical characterization

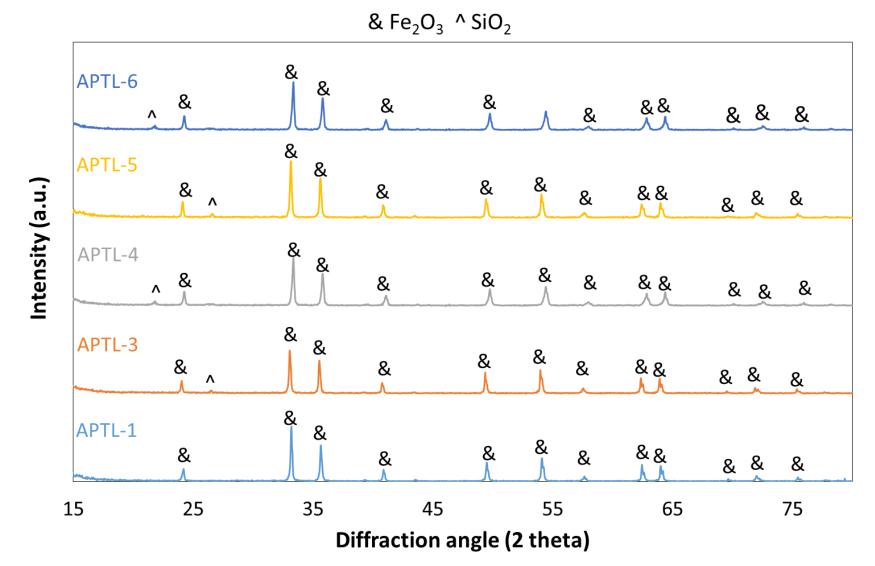

- > Applied techniques:
 - Scanning Electron Microscopy (SEM)
 - X-Ray Diffraction (XRD)
 - Hg porosimetry
 - Surface area (BET) by liquid N₂ adsorption
 - Crushing strength measurements

BCR samples - SEM analysis


- \succ Results very similar for all 425-850 μ m samples
- > Major elements identified by EDS: Al, Mn, Si, O. Also present: Ca, Ti & Fe

BCR samples - XRD analysis

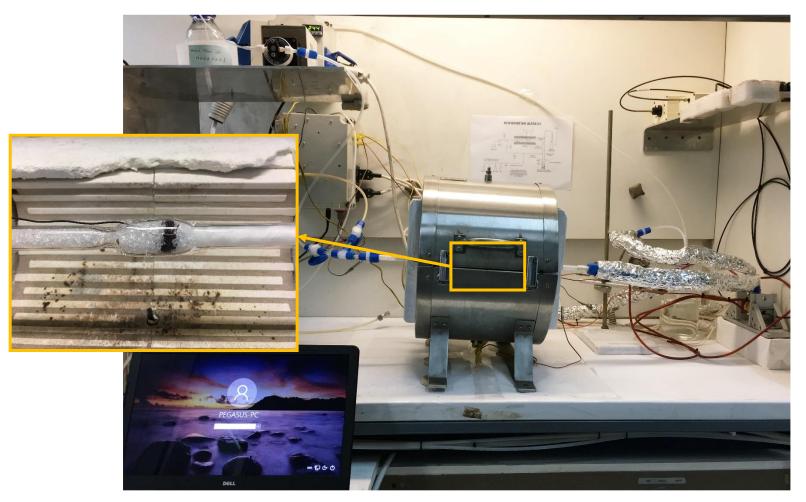
 \succ Main phases: alumina & aluminosilicates. Small amounts of Fe₂O₃, Mn₂O₃ & FeTi₂O₅


APTL samples - SEM analysis

➢ Results similar for all samples

- APTL-3/APTL-4 & APTL-5/APTL-6 have the same compositions but different calcination temperature
- Higher calcination temperature → more sintered structures
- Major elements (EDS): Fe, Al, Si

APTL samples - XRD analysis


> Main phase: Fe_2O_3 . Small amounts of SiO_2 in all but APTL-1 (pure iron oxide)

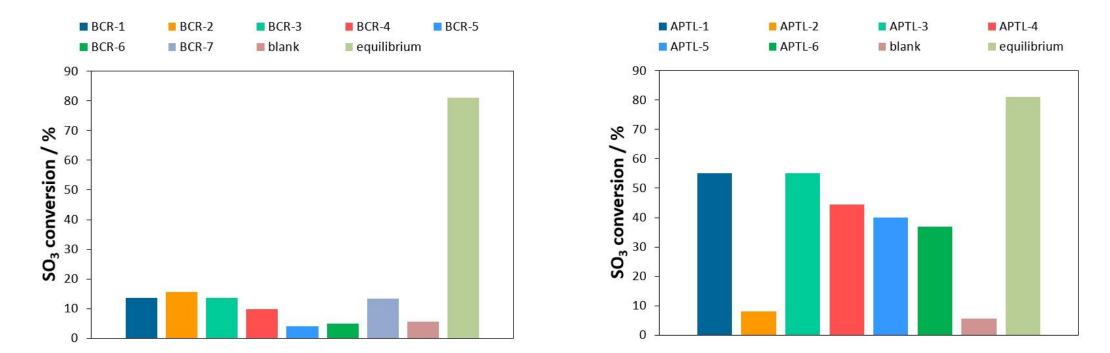
 \succ Relatively low crystallinity & absence of clear Al₂O₃ & Al-Si-O peaks

Hg porosimetry & BET Surface Area measurements (BCR and APTL)

- > No specific surface area (BET measurements) for BCR proppants
- Low specific area in APTL samples (~0 for high calcination temperatures, ~5 m²/g for lower)
- > No appreciable porosity by Hg-porosimetry in BCR proppants (if any, < 5%)

Setup for catalytic activity measurements

Quartz tube reactor filled with quartz beads (left side) and quartz wool (right side). Particles in fixed bed formulation

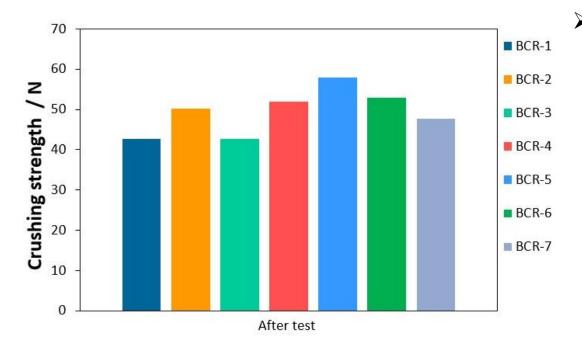

 \succ SO₂ analysis in a heated (210°C) quartz cuvette by UV-Vis spectrometry

Experimental conditions

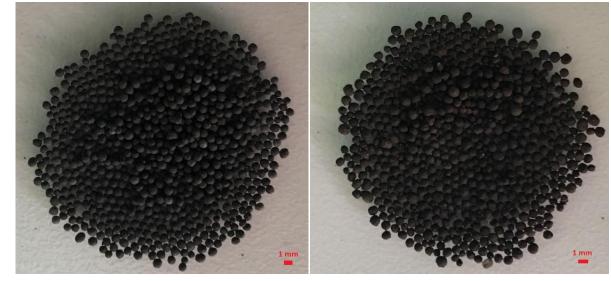
- > Experimental conditions set for the preliminary tests
 - ✓ Reaction temperature: 850°C, selected samples at 800-900°C
 - ✓ Pressure: 1 bar
 - ✓ Feed: conc. sulfuric acid (98%), 0.12 ml/min
 - ✓ GHSV = ~25,000 50,000 h^{-1}
 - ✓ Catalyst quantity per test: 1 g, selected samples 2 g
 - ✓ Dilution of reactor outlet with N_2 flow to achieve measurable SO_2 concentration values
 - ✓ On-stream exposure per test: approx. 60 min

Evaluation results

 \succ Decomposition reaction (SO₃ conversion to SO₂)

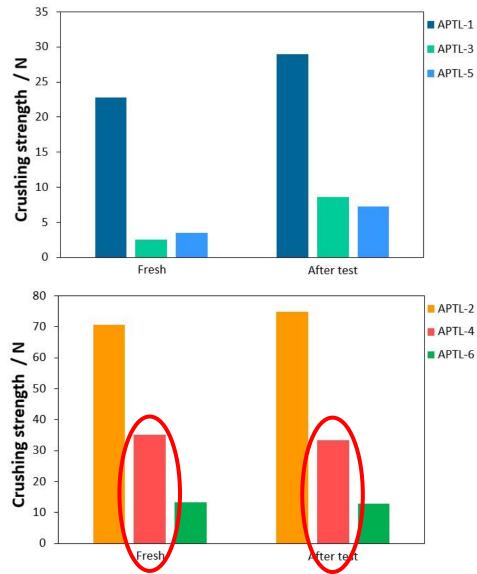

> Gas-phase SO₃ dissociation (blank) \rightarrow conversion of approx. 5%

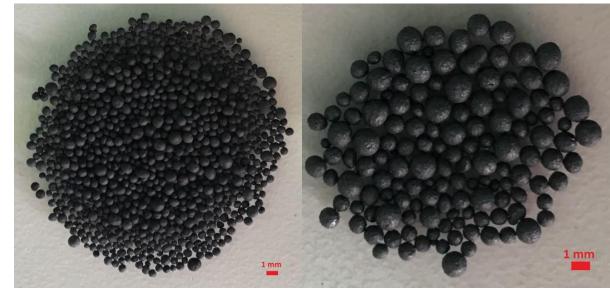
 \blacktriangleright BCR proppants \rightarrow relatively low performance, no significant effect of p.s. Absence of catalytically active phases


- > APTL particles (rich in Fe_2O_3) much higher efficiency
 - Samples calcined at lower temperature (APTL-1, APTL-3, APTL-5) more active cf. the ones calcined at high temperature
 - Pure Fe_2O_3 calcined at high temperature significant conversion decrease (<10%) \rightarrow withstood in composite cases

Structural stability performance – BCR proppants

Crushing Strength measurements of particles after decomposition experiments


 \succ Indicative post-experimental photos \rightarrow samples unharmed


- CS for the case of BCR proppants reduced by >50% after 60 min of exposure (>>100N before test), still high
- Independent of p.s. for BCR proppants, remains approx. same

Structural stability performance – APTL particles

> Crushing Strength measurements of particles before & after decomposition experiments

 \succ Indicative post-experimental photos \rightarrow samples unharmed

- APTL particles tend to have almost unchanged CS after test, if not increased
 - Due to sintering phenomena, samples calcined at high temperature (APTL-2, APTL-4, APTL-6) have higher structural stability than the same ones calcined at low temperature (APTL-1, APTL-3, APTL-5)
 - APTL-4 seems to have the in-principle most promising compromise between SO₃ conversion and CS

Conclusions & future improvements

- > Extremely high mechanical integrity leads to low catalytic activity in the proppants
 - ✓ Lack of sufficient catalytically active phases
- \succ Low to negligible surface areas \rightarrow seems not to play a major role in the SO₃ conversion
- > APTL-4 most promising material so far
 - ✓ Commercial Fe_2O_3 /Aluminosilicate composite
 - ✓ Combines blackish color, SO₃ conversion > 40% and CS > 20 N → However, s.o.a catalysts higher conversion
- Both approaches should be combined to create modified proppants relatively rich in catalytically active phases (e.g. Fe₂O₃, CuO etc.)
- > Need to find optimum compromise between catalytic activity and mechanical integrity
 - \checkmark Challenging conditions in the solar receiver
 - \checkmark Particles constantly circulated within the relevant steps of the integration process

Encouraging first results towards this direction

Thank you for your attention!

agk@cperi.certh.gr, Tel. + 30 2310 498421, http://apt.cperi.certh.gr