Sulphur – solar fuel for on demand power generation

Int. Workshop on Solar Thermochemistry, Juelich, Germany

<u>Dennis Thomey</u>, Christos Agrafiotis, Nicolas Overbeck, Martin Roeb, Christian Sattler

Contents

- Sulphur as industrial commodity
- Sulphur as thermochemical storage
- Solar sulphur power generation
- Background of DLR on sulphur cycles
- European project PEGASUS
- Conclusions and outlook

Comparison of energy storage densities

Technology	Energy density (kJ/kg)	
Hydrogen	141,886	1
Gasoline	47,357	1
Sulphur	9,281	2
Molten Salt	282	2
Lithium Ion Battery	580	2
Elevated water Dam (100m)	1	2

Sulphur in industrial processes

- Sulphur is required for **sulphuric acid** (SA) production
 - SA is world's most produced chemical
 ⇒ Global annual rate >200 Mio. tons
 - SA is measure of industrial development
 - SA is mainly needed for fertiliser production

Sulphur from desulphurisation of hydrocarbons via Claus process

Sulphur is by-product of metallurgic processes

Sulphur world production 2014

Total of 69.1 Mio. tons (avg. world price of US\$160 per ton)

Source: 2014 Minerals Yearbook, SULFUR, U.S. Geological Survey

Transportation and storage of sulphur In solid or liquid form

Ship

Pipeline

Molten sulphur in heated pipelines (~140 °C)

Thermochemical sulfur storage cycle for on-demand solar power production

PEGASUS - Process diagram Solar particle receiver Solar field 900 °C Hot particles storage tank SO_2 SO₂ SO_2 Storage H_2O SO₃ Gas H_2O Disproportionate Reactor **Decomposer** Separation H_2O Water 600 °C S SO₃, H₂O Storage Sulphuric dilute H₂SO₄ H₂SO₄ Storage H₂SO₄ 100 °C Concentrator Solar site Absorbers N_2 Sulphur Storage Cold particles SO₃, O₂, N₂ storage tank Contact SO₂ Non-solar site process O_2 Sulphur Steam Gas Burner **Turbine** Steam Turbine Air Electricity 3

Integration of solar sulphur power generation

Research of DLR on sulphur cycles

- Experience on solar sulphuric acid cracking since more than 20 years
- Research on Hybrid Sulphur Cycle in European projects HYTHEC, HycycleS and SOL2HY2 (2004 – 2016)
 - Development and on-sun testing of receiver/reactors in solar furnace
 - Construction of pilot unit and demo operation on solar tower
 - Modelling of reactors
 - Testing of catalysts and construction materials
 - Flowsheeting and techno-economics of HyS process
 - Scale-up concepts

Project Baseload (Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation)

- Funding: United States Department of Energy (DOE)
 - 2 project phases from 2010 to 2013
 - GO/NO-GO review after phase I
 - Phase I completed in Mar. 2012
 - GO recommendation for Phase II (May 2012 Oct. 2013)

- Coordinator: General Atomics (GA), USA
 - SO₂ disproportionation
 - Sulfur combustion
 - Experiments, plant design, flowsheeting, economics
- Subcontractor: German Aerospace Center (DLR)
 - H₂SO₄ decomposition
 - Experiments, modeling
 - Funded work and in-kind contribution

PEGASUS partners

- DLR, Germany (<u>Coordinator</u>)
 - Solar tower/simulator owner/operator
 - Solar receiver/reactor developer
- APTL/CERTH, Greece
 - Catalyst materials developer
- KIT, Germany
 - Combustion specialist
- Baltic Ceramics, Poland
 - Advanced ceramics manufacturer
- Processi Innovativi, Italy
 - Power plant designer/contractor
- BrightSource, Israel
 - CSP plant designer/contractor

- University
- SME
- Industry

PEGASUS – Work plan

- WP1: Catalytic particles development, manufacturing APTL, Baltic Ceramics
- WP2: Centrifugal particle solar receiver DLR
 - Preparation of existing test receiver
 - On-sun test operation with catalytic particles (WP1)
- WP3: Sulphur trioxide decomposer + WP4: Sulphuric acid evaporator DLR
 - Development and construction of moving bed reactors with direct (WP3) and indirect (WP4) heat transfer
 - Off-sun test operation
- WP5: Sulphur Combustor KIT
 - Development, construction and operation of sulphur burner
- WT6.1, 6.5, 6.6:Overall concept evaluation Processi Innovativi, BrightSource
 - System modelling, flowsheeting, techno-economy
- WT6.2-6.4: System integration, test operation DLR
 - Integrated operation of solar receiver (WP2) and sulphuric acid splitting reactors (WP3, WP4)

Centrifugal particle solar receiver optimization Application of pilot receiver developed in CentRec project

- Centrifugal particle receiver was erected on scaffold in front of Juelich Solar Tower
 - Nominal power: 2.5 MW_{th}
 - Diameter of aperture: 1.13 m
 - Max. particle temperature: 1000 °C
- Commissioning is in progress
- Solar testing of CentRec pilot planned to start in autumn 2017

Project PEGASUS

- Pre-testing of catalytic particles in CentRec pilot
- Integrated testing together with particle reactors for sulphuric acid splitting planned in last project year

Design options for decomposer and evaporator

SO₃ decomposer

Direct contact

Sulphuric acid evaporator

Indirect heat transfer (tube/plate HX)

Conclusions and outlook

- Sulphur is one of the most important commodity of chemical industry
- Sulphur has high thermochemical energy density
- Transportation and storage of solid or liquid sulphur is industrial practice
- Solar sulphur cycle for baseload and on-demand power production
 - Estimated solar-to-fuel efficiency of ~21%
- Potential for integration of sulphur cycle into existing sulphuric acid plants
- Investigation of solar sulphur cycle in European project PEGASUS
 - Development of catalytically active solar particles
 - Construction of particle reactor for sulphuric acid splitting
 - Prototype development of sulphur burner for SO₂ gas turbine

Thank you for your attention!

Co-funded by the Horizon 2020 Framework Programme of the European Union

