High Temperature
Solar Thermochemical Energy Storage

Peter Kreider, Keith Lovegrove, Alan Weimer, Wojciech Lipiński
Research School of Engineering, The Australian National University, Canberra, ACT 2601, Australia

International Workshop on Solar Thermochemistry
Jülich, Germany; September 12-14
Solar Thermal History at ANU

- Solar thermal at ANU since 1970/71
- White Cliffs power station, first solar power plant in Australia, 1984
- ANU SG3 Dish, largest solar dish concentrator in the world, 1994
- Ammonia thermochemical energy storage, 1998
- ANU SG4 Big Dish, largest solar dish concentrator in the world, 2009
- Solar chemistry and basic research expansion, 2013
- Craig Building, ANU high-flux solar simulator, materials labs, 2015
Solar Thermal Research at ANU

- Solar fuels
- Solar materials
- Solar power
- Solar concentrators
- Thermal storage
- Solar heating and cooling

Fundamentals:
- Thermal science
- Physics & optics
- Chemistry & materials
- Control & dynamics
- System integration
Solar Reserve’s Crescent Dunes

- 110MW_e, 10 hours storage
- 670MW_th receiver 20.4m x 17.7m diameter
- 200m high tower
- ~ 3,000m diameter heliostat field
RND005 ARENA Project: High temperature solar thermal energy storage via manganese-oxide based redox cycling

Overall project goals

• Demonstrate the potential of CSP with integrated thermochemical energy storage
 → High temperatures >1000°C → combined gas/steam turbine power cycle → power block efficiencies up to 60%.
 → Need for high-temperature thermal energy storage

• ASTRI LCOE target: 0.12 AUD(2012)/kWh_e
 US Sunshot targets: LCOE: 0.06 USD/kWh_e, storage: 15 $/kWh_{th}
Project Overview

Task 1: Active Material Development (CU, ANU)

Task 2: Solar Reactor Development (ANU)

Task 3: Optical Field Design (ANU)

Task 4: Techno-Economic Analyses (CU, ANU, IT Power)
Manganese oxide thermodynamics

\[\text{MnO}_2 \leftrightarrow \text{Mn}_2\text{O}_3 \leftrightarrow \alpha\text{-Mn}_3\text{O}_4 \leftrightarrow \beta\text{-Mn}_3\text{O}_4 \leftrightarrow \text{MnO} \leftrightarrow \text{Slag} \]

Reduction in N\(_2\)

- Starting point: 2 mol MnO, 100 mol N\(_2\)
- Enthalpies of reaction:
 - \(\text{MnO}_2 / \text{Mn}_2\text{O}_3\):
 - Transition: 280-350 °C
 - \(\Delta h\): 481 kJ kg\(^{-1}\) [1]
 - \(\text{Mn}_2\text{O}_3/\alpha\text{-Mn}_3\text{O}_4\):
 - Transition: 700 °C
 - \(\Delta h\): 214 kJ kg\(^{-1}\)
 - \(\alpha\text{-Mn}_3\text{O}_4/\beta\text{-Mn}_3\text{O}_4\):
 - Transition: 1173 °C
 - \(\Delta h\): 80 kJ kg\(^{-1}\)
 - \(\beta\text{-Mn}_3\text{O}_4/\text{MnO}\):
 - Transition: 1450 °C
 - \(\Delta h\): 897 kJ kg\(^{-1}\)
 - Slagging:
 - Transition: 1625 °C
 - \(\Delta h\): 1580 kJ kg\(^{-1}\)

Oxidation in air

- Starting point: 2 mol MnO, 79 mol N\(_2\), 21 mol O\(_2\)
- Enthalpies of reaction:
 - \(\text{MnO}_2 (\text{tetragonal})\):
 - Transition: 280-350 °C
 - \(\Delta h\): 481 kJ kg\(^{-1}\) [1]
 - \(\text{Mn}_2\text{O}_3 (\text{cubic})\):
 - Transition: 467 °C
 - \(\Delta h\): 214 kJ kg\(^{-1}\)
 - \(\alpha\text{-Mn}_3\text{O}_4 (\text{tetragonal spinel})\):
 - Transition: 1173 °C
 - \(\Delta h\): 80 kJ kg\(^{-1}\)
 - \(\beta\text{-Mn}_3\text{O}_4 (\text{cubic spinel})\):
 - Transition: 1450 °C
 - \(\Delta h\): 897 kJ kg\(^{-1}\)

Sensible heat:
\(c_p \sim 1\) kJ/kg/K (800–1500°C)

Manganese oxide kinetics

\[\text{Mn}_2\text{O}_3 \rightarrow \text{MnO} \text{ conversion in N}_2 \text{ carrier gas} \]

\[\text{MnO} \rightarrow \text{Mn}_3\text{O}_4 \text{ conversion in N}_2 \text{ carrier gas with 0.25-1\% O}_2 \]

Enhancement of \(\text{Mn}_3\text{O}_4 \rightarrow \text{Mn}_2\text{O}_3 \) re-oxidation kinetics

- 44 \(\mu \)m particles
- Residence times: \(\sim 1-3 \) s

Particle fabrication

Büchi spray-dryer

SEM of synthesized particles

Synthesis route

Before calcining

After 8 hours of calcining at 1200°C
Table 4. Comparison of modelling parameters for default molten salt tower system and MnO$_x$ system.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value in updated Molten Salt tower model</th>
<th>Change for MnO$_x$ system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heliostat mirror area</td>
<td>1,289,123 m2</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Tower height</td>
<td>203.3m</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Power cycle output</td>
<td>100 MW$_e$ Steam</td>
<td>Similar or higher</td>
</tr>
<tr>
<td>Power cycle conversion efficiency</td>
<td>41.2%</td>
<td>Increases to 57%</td>
</tr>
<tr>
<td>Thermal Energy storage</td>
<td>10 Hours at full load</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site improvements</td>
<td>$21.6m</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Heliostat field</td>
<td>$238.2m</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Power block</td>
<td>$76.3m</td>
<td>Lower tbc</td>
</tr>
<tr>
<td>Balance of plant</td>
<td>$45.4m</td>
<td>Lower tbc</td>
</tr>
<tr>
<td>Storage</td>
<td>$94.9m</td>
<td>Similar tbc</td>
</tr>
<tr>
<td>Tower</td>
<td>$28.7m</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Receiver</td>
<td>$84.9m</td>
<td>This will increase due to added complexity. A system with secondary concentrators to boost concentration and maintain thermal efficiency is assumed.</td>
</tr>
<tr>
<td>Indirect costs @25%</td>
<td>$147.5m</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Variable O&M costs</td>
<td>$15/MWh</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Annual generation at Longreach Qld</td>
<td>528.3 6GWh</td>
<td>Increases to 594 GWh</td>
</tr>
<tr>
<td>Real LCOE</td>
<td>$150/MWh</td>
<td>Approx. $130/MWh, tbc</td>
</tr>
</tbody>
</table>