Using Solar Thermal for Chemical Processing

Nick AuYeung
Goran Jovanovic
Alex Yokochi
Líney Árnadóttir
Fuqiong Lei
Yige Wang
Lucas Freiberg
Savings Opportunity for Petrochemicals, Nearly half from ethylene production
Ethane Cracking

- Overall reaction: $\text{C}_2\text{H}_6 \leftrightarrow \text{C}_2\text{H}_4 + \text{H}_2$

- Typical reaction occurs at 800-900°C
- Relatively low pressure
- Typically in presence of $\sim 3:1$ steam molar ratio
- Non-catalytic

- Platform chemical
Energy Consumption in Ethylene Production

47% of energy consumed is direct thermal energy = potential solar opportunity

Miniature Reactor

Top metal plate

Sapphire window

Alumina insulation

Bottom metal body

Alumina inner tube
Miniature Reactor
Apparatus

[Diagram showing a process flow with labels such as Argon Reference, Mass Flow Controllers, 3% Ethane in Balance N₂, Liquids H₂O, Boiler, Superheater, Preheaters, 130°C, 160°C, 170°C, Truncated Ellipsoidal Reflector, 6kW Xenon Arc Lamp, Quartz Window, Solar Reactor, Flowmeter, Condenser, RGA, GC Sample Port, Temperature Controlled Heat Tape.]
Solar simulator setup
Temperatures both at the top and bottom of the reactive cavity vs. gas flowrate under different lamp power levels. The upward-pointing triangle and the downward-pointing triangle represent the temperatures measured by the top and bottom thermocouples respectively.
Performance Metrics

- **Conversion**
 \[X_{C_2H_6} = \frac{\dot{n}_{C_2H_6,in} - \dot{n}_{C_2H_6,out}}{\dot{n}_{C_2H_6,in}} \times 100 \]

- **Selectivity**
 \[S_{C_2H_4} = \frac{\dot{n}_{C_2H_4,out}}{\dot{n}_{C_2H_6,in} - \dot{n}_{C_2H_6,out}} \times 100 \]

- **Yield**
 \[Y_{C_2H_4} = \frac{\dot{n}_{C_2H_4,out}}{\dot{n}_{C_2H_6,in}} \times 100 \]

- **Thermal Efficiency**
 \[\eta = \frac{\dot{n}_{C_2H_4,out} \cdot \Delta H_r(T)}{\text{incident heat flux}} \times 100 \]
Effect of Temperature

Temperature study at a pseudo-constant residence time of 0.25 sec and a steam-to-ethane ratio of 3.3:1
Effect of Mean Residence Time

Different flow rates of gas were tested at 50% lamp power (800-880°C) with no steam in the feed.
Carbon balance for ethane cracking at different lamp powers for a constant steam to ethane ratio of 3.3:1 and mean residence time of 0.25 seconds.
Summary

• Dilute (3% or less) ethane was successfully converted to ethylene and hydrogen using simulated sunlight and a miniaturized reactor.

• Efficiency can likely be enhanced by not diluting feed gas, though coking will likely be observed.

• Yields exceeded 50%.

• Potential to replace fossil energy with solar energy
Future Work

• Higher concentration of ethane in feed
• Explore heat recuperation
• Other feed constituents and inclusion of catalysts
Nature, April 2016

*A quad is a unit of energy equal to 10^{15} British Thermal Units (1 BTU is about 0.0003 kilowatt-hours).
Acknowledgements

• PTT Public Company Limited (Thailand) for their generous support

• Process and Reaction Engineering research group at Oregon State University
 – Prof. Goran Jovanovic
 – Prof. Alex Yokochi
 – Prof. Líney Árnadóttir
 – Fuqiong Lei
 – Yige Wang
 – Lucas Freibergh
 – Adam Shareghi
Total Eclipse
August 21st, 2017 Corvallis, Oregon

Photo credit Logan Howell