Ablaze in 1916

March 3, 2016

On a quiet Sunday morning 100 years ago, Michigan State lost its Engineering Building to fire

One hundred years ago this week -- on Sunday, March 5, 1916, the Michigan Agricultural College (M.A.C., now Michigan State University) lost its Engineering Building to a devastating fire.

It is believed that the blaze began around 5 a.m. in the concrete labs in the southeast corner of the Engineering Building basement. There was no loss of life.

The fire quickly spread through the empty building and its engineering shops. The fire then leapt to the roof of Wells Hall, which was then a dormitory near the Engineering Building. Wells only sustained minor damage.

The 1916 yearbook, The Wolverine, wrote: “. . . the ruins had scarcely ceased smoking before a new schedule of classes . . . was formulated for the 400 engineering students. When sessions began on Monday morning . . . not a class was missed.”

The fire was a special tragedy for the 60-year-old agriculture and applied sciences school because the Engineering Building was among the college’s newest and most modern buildings. Built in 1907 next to M.A.C.’s Mechanical Building, the Engineering Building had been formally dedicated on June 22, 1908. Both buildings were destroyed in the blaze.

Acting president at the time was Frank S. Kedzie, who took over leadership of M.A.C. in September 1915 and served as president until 1921.

On April 25, 1916, The M.A.C. Record reported: “The story goes that in the early days of M.A.C. President Kedzie, his father, Dr. R. C. Kedzie, was in a position to do a great favor to the father of (automotive executive) Ransom E. Olds. These men were warm friends and their sons have continued this friendship. Hence Mr. Olds finds this a very
opportune time to help Dr. Kedzie out of the first real worry of his college administration.”

A few days later, R. E. Olds wrote a letter to President Kedzie expressing his intent to contribute $100,000 toward reconstruction of the Engineering Building.

The R. E. Olds Hall of Engineering was built on the old foundation of the former Engineering Building. Inside and out, it was a near replica of the original structure, with the only exception being the design of the windows near the top of the building.

Olds Hall was formally dedicated on June 1, 1917, along with the new engineering shops (“a two-story, fire-proof shop building,” located to the east of Olds Hall).

The M.A.C. Record reported on June 5, 1917: “R. E. Olds was present in person at the dedication of R. E. Olds Hall and, in turning over the keys of the building to Engineering Dean George Bissel, said, ‘It is my observation that the students turned out of this college are better fitted on the average than those from any other college in the country.’”

Olds Hall served as the home for engineering for 45 years, until the growing college moved to its new building on Shaw Lane in 1962. Today, the College of Engineering serves 5,000 undergraduates and more than 600 graduate students. MSU constructed additions to the Shaw Lane building in 1989 and 1997.

Olds Hall remains at MSU, housing a variety of academic and administrative units. Its original sign, The R. E. Olds H
of Engineering, still welcomes visitors over the building’s front door.

**MSU works to reduce the burden of fire**

The risk of a devastating fire on campus has diminished in the past 100 years, said Venkatesh Kodur, professor of civil and environmental engineering.

“Since the 1916 fire, we have come a long way in tackling fire hazard,” Kodur explained. “Continued research and development have reduced the adverse impact that fires cause to buildings and built infrastructure.”

Kodur said research advances have been spurred on, in part, by the fire devastation on Sept. 11, 2001, at the World Trade Center site in New York City. MSU is a leader in advancing the reduction of fire hazards, he noted.

Michigan State was the first university in the United States to host the world’s leading international workshop on performance, protection, and strengthening of structures under extreme loading when it hosted PROTECT2015 last June. The international conference attracted 140 professionals from 30 countries who shared research and technology to develop solutions and improve safety.

“MSU’s Department of Civil and Environmental Engineering also has established unique structural fire test facilities and a high-profile research program in structural fire engineering,” he continued. “Our aim is to minimize fire losses and enhance fire safety.”

Much of that work is done in the MSU Center for Structural Fire Engineering and Diagnostics, located on Jolly Road, south of campus. MSU currently has two undergraduate, five master’s, and eight PhD students, as well as five visiting scholars from India, UAE, China, and Japan working at the lab.

Kodur said the lab possesses state-of-the-art equipment for undertaking fire experiments on materials and structural systems. It includes a first-of-its-kind structural fire-testing furnace at an American university, and various material characterization instruments for measuring high temperature properties.

“Our infrastructure around the world is aging at a rapid pace,” Kodur said, “yet our expectations of better performance are increasing. Our graduates are helping to reduce fire burden around the world,” he added.

*Portions of this story are courtesy of “100 Years of Engineering at Michigan State University,” a 2008 publication by Laura Luptowski Seeley.*

**Related Website:** [More 1916 fire photos](https://www.egr.msu.edu/news/2016/03/03/ablaze-1916)
[MSU Civil Infrastructure Laboratory](https://www.egr.msu.edu/news/2016/03/03/ablaze-1916)
[MSU hosts PROTECT 2015](https://www.egr.msu.edu/news/2016/03/03/ablaze-1916)
[Fire in Microgravity](https://www.egr.msu.edu/news/2016/03/03/ablaze-1916)
[Communications contact: Patricia Mroczek](https://www.egr.msu.edu/news/2016/03/03/ablaze-1916)

**Source URL:** https://www.egr.msu.edu/news/2016/03/03/ablaze-1916