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Copyright
NET v1.0 is a free software, redistribution and/or modification of it is under the terms of the GNU 
General Public License as published by the Free Software Foundation, either version 3 of the 
License, or (at your option) any later version.
 A copy of the GNU General Public License is available at http://www.gnu.org/licenses/.

Abstract
An analytical software for network evolution theory (NET) to describe the macroscopic behavior of 
filled rubber-like materials at different loading directions is presented. The software is based on a 
modular platform that is particularly designed to capture Mullins effect, permanent set, and 
deformation-induced anisotropy. Other inelastic  features of elastomers can be modeled and added to 
the framework. Only the basic framework is covered in the NET v1.0,   which is based on 
decomposition of the network to two parallel networks of pure rubber (CC) and a polymer-filler (PP).

Introduction
Here, the NET code is developed based on the network evolution theory presented by Dargazany and 
Itskov [1]. Employing the concept of network decomposition, they have decomposed the rubber into 
two parallel networks CC and PP, where CC was a hyper-elastic network and PP was responsible for 
Permanent damage and its features, such as the Mullins effect, permanent set and deformation-
induced anisotropy. The main advantages of this model are simplicity, a small number of physically-
motivated material parameters, fast fitting procedure, thermo-dynamical consistency and an easy 
finite element implementation procedure. The procedure of implementation into FE softwares were 
developed later [2], in which  the network evolution model calculates the contribution of the inelastic 
features based on the free energy function. This code is organized as Table 1.



1. Problem Description of the Induced Anisotropy

2. Statistical mechanics of a single chain

3. Aggregate-polymer debonding

4. Network rearrangement

5. Numerical integration

6. Strain amplification

7. Three-dimensional generalization

8. Macroscale behavior

9. Plot an Example

Table 1   Essential steps in an analytical solution of  network 
evolution model

Here, NET v1.0 is developed  in Maple (R) to simulate the constitutive behavior of elastomers in 
terms of stress-strain curves.  
The code output is first Piola-Kirchhoff or nominal stress tensor, P, while the input is mainly the 
deformation gradient tensor and its history in the past. 
This code developed based on uni-axial tensile loading 
was subjected to uni-axial tensions in other directions.
This set-up of the loading in different direction designated to show Mullins effect, permanent set 
and deformation-induced anisotropy. 

Initializations

Load packages and define initial data by clicking on the icon below.

Problem Description of the Induced Anisotropy

Deformation-induced anisotropy is coded as the changes in the properties of the material in a specific

loading is considered through the following sequential loading pattern:

unloaded to the



stress-free state.
To prepare the testing in the other direction, a new sample is cut from the current sample in a 
specific angle 
  uni-axial tension is applied in direction  until the maximum stretch of 
(i+1).

Permanent damages will be transferred from previous loading steps to the next step, similar to if 
the sample (i+1) was cut out of the sample (i) as depicted in the Figure. In the following 
experiment, history of streches in different directions stored and used for calculation of 
constitutive model of current state.

where is the tranpose pf the rotation matrix RM.



As an example, loading is asumed to be applied in y directin.

(5.1)

The history of streches at different directions are stored in two vector ( , ). In the 
case of induced anisotropy, number of loading in differnt directions in the past, n_history, the 
direction of loading, omega_histroy, and their correponding stretch histrory, lambda_histroy, are 
given as

Note:  The algorithm is capable to handle different loading scenarios . The problem definition can be 
changed to any specific sample geometry or test by replacement of the deformation gradient and the 
boundary conditions.  Different loading scenarios can be modeled in this framework by changing  
in this section. The boundary condition is generally considered to be . 

Bi-axial tension

Shear

Compression,  the deformation gradient is the same as uni-axial tension and software can model it
by adjusting plotting parameters only.



Statistical mechanics of a single chain

According to [1],  the probability of existence of a polymer chain in which none of the segments 
between numbers 1 and n are attached to an aggregate surface, is given by:

(6.1)

In this equation, 

                          =normalized end-to-end distance with respect to the segment length (R/l)
and

. 

(6.2)



PP Netowrk
It host all damages, The damages are considered to be resulted from two simoltanous mechanisms

1.Aggregate-polymer debonding

In the course of deformation, polymer chains begin to slide on or debond from the aggregates. 
This debonding starts with the shortest chain and gradually involves longer and longer chains. 

The length of the shortest available chain in the deformed subnetwork is then obtained by

 



denotes the maximal micro-stretch reached in direction d. upper bond of  the relative length is 
 (material parameter).

 Accordingly, the set of available relative lengths of chains bounded to aggregates in the direction 
d can be expressed by

(7.1.1)

2. Network rearrangement

The concept of chain rearrangement in a rubber network suggests that the detachment of chains 
from the aggregate surface does not necessarily result in the complete loss of their role in the 
network entropic energy, but it may also lead to the activation of some new segments. Thus, all in 
all, one can assume that the total number of active segments remains constant. This assumption 
yields

where ) ,



(7.2.1)

In this equation, We consider R0 and N0 as material constants.
So, we can calculate the energy of a subnetwork of PP network in direction d  as:

Numerical integration

For 3D generalization, we need to sum microscopic strain energies of all active chains available 
within the network which can be calculated by integration over the unit sphere. 
Integeration over the unit sphere can be carried out numerically by



where  are the weight factors corresponding to the collocation directions  (i =1.. k). A set of k 
= 21 integration points on the half-sphere is chosen

Strain amplification

In a filler-reinforced rubber network, the stretch of the polymer chains between aggregates (micro-
stretch) generally exceeds the stretch applied to the rubber matrix (macrostretch).
This strain amplification concept is based on the fact that filler aggregates are considerably stiffer 
than the polymer chains connecting them together.

(9.1)



Three-dimensional generalization

 Calculation of parametrs in direction d

integration directions.

  

Macroscale behavior

where

 



 

Inverse Langevin function, a proper approximation approach for the inverse Langevin function can 
be chosen depending on  the elongation range of polymer chains, Padé approximants show better 

L__inv := proc (x) options operator, arrow; 3*x/
(1-x^3) end proc

(11.1)

Due to the incompressibility of elastomers, one can use the following lagrange multiplier, p,  to 
satisfy the icompressibility condition
 



For , we have 

where DOD_p represents the tensor  , pl  the lagrange ultiplier p, DD_n is the 1,1 
component of  the tensor   at the current loading direction in the global coordinates. 
Here, DOD_i represents the stretch field of the current sample which is stretched in direction D.

Summation of caculated stress in different direction

where P_n[i] reresents the stress component in each integration direction.

Plot an Example
Here we used the data from tabel 3 reference  [2] to illustrate capability of this algorithm.
In this part we assumed material parameters as bellow an ploted stress and strain graph.
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