ECE 929D: Advanced Computational Methods in Electromagnetics
Spring 2015:

Instructor: Prof. Shanker Balasubramaniam
email: bshanker@egr.msu.edu)
Office Hours: By appointment.
Recommended Text: None; most of the course will be taught using papers that will be available on the class website.

Class Policies

1. Homework: Approximately 7-8 homework assignments will be given. Most of these will involve programming and possibly, proofs.

2. Projects: There will be 3 projects during the course of the semester + 1 presentation. The last project will be presented to the class the week before the final.

3. Grade Distribution
 - Homework: 30%
 - Projects: 60%
 - Presentation: 10%

Course Outline:

1. Introduction
 (a) Complexity
 (b) $O(N)$ methods
 (c) Fast Fourier transforms
 (d) Polynomial systems
 (e) Different matrix structures
 (f) Mapping of Fast Fourier Transforms to Toeplitz Matrices

2. Development of FFT-like schemes
 (a) Fast matrix vector multiplication
 (b) CGFFT
 (c) Adaptive integral methods (on a uniform grid)
 (d) Adaptive integral methods (on a non-uniform grid)

3. Rank deficient methods (SVD and IES3)

4. Fast multipole methods
 (a) FMM for the Laplace Equation
 (b) Variations of this technique for other kernels (low frequency, time domain, Gauss, etc)
 (c) 2-D FMM for the Helmholtz equation
 (d) 3-D FMM for the Helmholtz equation
 (e) Plane wave time domain scheme for the wave equation