ECE 929D: Advanced Computational Methods in Electromagnetics Spring 2015;

Instructor: Prof. Shanker Balasubramaniam

email: bshanker@egr.msu.edu)
Office Hours: By appointment.

Recommended Text: None; most of the course will be taught using papers that will be available on the

class website.
Class Policies

- 1. **Homework** Approximately 7-8 homework assignments will be given. Most of these will involve programming and possibly, proofs.
- 2. **Projects**: There will be 3 projects during the course of the semester + 1 presentation. The last project will be presented to the class the week before the final.

3. Grade Distribution

Homework: 30%Projects: 60%Presentation: 10%

Course Outline:

- 1. Introduction
 - (a) Complexity
 - (b) $\mathcal{O}(N)$ methods
 - (c) Fast Fourier transforms
 - (d) Polynomial systems
 - (e) Different matrix structures
 - (f) Mapping of Fast Fourier Transforms to Toeplitz Matrices
- 2. Development of FFT-like schemes
 - (a) Fast matrix vector multiplication
 - (b) CGFFT
 - (c) Adaptive integral methods (on a uniform grid)
 - (d) Adaptive integral methods (on a non-uniform grid)
- 3. Rank deficient methods (SVD and IES³)
- 4. Fast multipole methods
 - (a) FMM for the Laplace Equation
 - (b) Variations of this technique for other kernels (low frequency, time domain, Gauss, etc)
 - (c) 2-D FMM for the Helmholtz equation
 - (d) 3-D FMM for the Helmholtz equation
 - (e) Plane wave time domain scheme for the wave equation