ECE 837: Computational Electromagnetics and Acoustics Fall 2012;

Instructors: Prof. Shanker Balasubramaniam

email: bshanker@egr.msu.edu

Office Hours: By appointment-typically any day

Recommended Text: Computational Methods in Electromagnetics, A. F. Peterson, S. Ray and R. Mittra,

IEEE Press. I will attempt to provide notes! All of these will be uploaded on Angel!

Suggested Books:

1. Field Computation by Method of Moments, R. F. Harrington, IEEE Press

- 2. Finite Element Methods in Electromagnetics, J. Jin, Wiley
- 3. Finite Difference Time Domain, Kunz and Luebbers
- 4. Finite Element Methods for Electromagnetics, J. Volakis, A. Chatterjee, and L. Kempel, IEEE Press.
- 5. Other books on Finite element methods Brenner & Scott, Monk

Class Policies

- 1. **Homework** Some homeworks will be assigned.
- 2. Projects + presentation; There will be three class projects and a presentation of your work in class. These projects will be assigned on an individual basis, and can span all aspects of EM and others.
- 3. Grade Distribution

Homework: 25%Projects: 75%

Tentative Course Outline:

- 1. Review of electromagnetics
 - (a) Importance of computational methods
 - (b) Fundamental theorems and principles in electromagnetics
 - (c) Auxiliary potentials and construction of solutions
 - (d) Introduction to Greens functions
 - (e) Introduction to linear spaces, basis functions, and interpolation
 - (f) Introduction to operators in electromagnetics
- 2. Finite Difference Methods
 - (a) Solving a simple 1-D equation using finite differences
 - (b) 1-D scalar equations
 - (c) Stability and dispersion characteristics of such systems
 - (d) 2-D equations; Laplace and Poisson systems
 - (e) Boundary conditions; Matrix solutions and Iterative solvers

- (f) 2-D Helmholtz equations
- (g) Yee-cell
- (h) Absorbing boundary conditions
- (i) Perfectly matched layers
- (j) 3-D Helmholtz equations

3. Integral equations

- (a) Basis functions
- (b) Greens theorems and integral equations
- (c) Greens function for the Helmholtz equation in 2 and 3 dimensions
- (d) Kinds of integral equation operators
- (e) Construction of solutions in 1-D;
- (f) Basis functions in 2-D space
- (g) Construction of solutions in 2-D
- (h) Electric and magentic field integral equations
- (i) Uniqueness of solutions and the combined field/source integral equation.
- (j) Construction of solutions in three dimensions

4. Finite Element Methods

- (a) Variational formulation
- (b) Basis function (highlight differences from that used for IE)
- (c) Scalar wave equation
- (d) Construction of matrix systems
- (e) Imposition of boundary conditions
- (f) Vector elements
- (g) Construction of matrix systems
- (h) Imposition of boundary conditions
- (i) Advanced topics