LM566C Voltage Controlled Oscillator

General Description
The LM566CN is a general purpose voltage controlled oscillator which may be used to generate square and triangular waves, the frequency of which is a very linear function of a control voltage. The frequency is also a function of an external resistor and capacitor.
The LM566CN is specified for operation over the 0°C to +70°C temperature range.

Features
- Wide supply voltage range: 10V to 24V
- Very linear modulation characteristics
- High temperature stability
- Excellent supply voltage rejection
- 10 to 1 frequency range with fixed capacitor
- Frequency programmable by means of current, voltage, resistor or capacitor

Applications
- FM modulation
- Signal generation
- Function generation
- Frequency shift keying
- Tone generation

Connection Diagram
Dual-In-Line Package

Order Number LM566CN
See NS Package Number N08E

Typical Application
1 kHz and 10 kHz TTL Compatible Voltage Controlled Oscillator

©1995 National Semiconductor Corporation
Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Power Supply Voltage 26V
Power Dissipation (Note 1) 1000 mW
Operating Temperature Range, LM566CN 0°C to +70°C
Lead Temperature (Soldering, 10 sec.) +260°C

Electrical Characteristics $V_{CC} = 12V$, $T_A = 25°C$, AC Test Circuit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM566C</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Operating Frequency</td>
<td>$R_0 = 2k$ $C_0 = 2.7 \text{ pF}$</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCO Free-Running Frequency</td>
<td>$C_O = -1.5 \text{ nF}$ $R_O = 20k$ $f_O = 10 \text{ kHz}$</td>
<td>-30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range Pin 5</td>
<td></td>
<td>$1/2V_{CC}$</td>
<td>V_{CC}</td>
</tr>
<tr>
<td>Average Temperature Coefficient of Operating Frequency</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Supply Voltage Rejection</td>
<td>10–20V</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>Input impedance Pin 5</td>
<td></td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>VCO Sensitivity For Pin 5, From 8–10V, $f_O = 10 \text{ kHz}$</td>
<td>6.0</td>
<td>6.6</td>
<td>7.2</td>
</tr>
<tr>
<td>FM Distortion</td>
<td>$\pm 10%$ Deviation</td>
<td>0.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Maximum Sweep Rate</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sweep Range</td>
<td></td>
<td>10:1</td>
<td></td>
</tr>
<tr>
<td>Output Impedance Pin 3</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Pin 4</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Square Wave Output Level</td>
<td>$R_{L1} = 10k$</td>
<td>5.0</td>
<td>5.4</td>
</tr>
<tr>
<td>Triangle Wave Output Level</td>
<td>$R_{L2} = 10k$</td>
<td>2.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Square Wave Duty Cycle</td>
<td></td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Square Wave Rise Time</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Square Wave Fall Time</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Triangle Wave Linearity</td>
<td>$+1V$ Segment at $1/2V_{CC}$</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The maximum junction temperature of the LM566CN is 150°C. For operation at elevated junction temperatures, maximum power dissipation must be derated based on a thermal resistance of 115°C/W, junction to ambient.

Applications Information
The LM566CN may be operated from either a single supply as shown in this test circuit, or from a split (\pm) power supply. When operating from a split supply, the square wave output (pin 3) is TTL compatible (2 mA current sink) with the addition of a 4.7 kΩ resistor from pin 3 to ground.

A 0.001 μF capacitor is connected between pins 5 and 6 to prevent parasitic oscillations that may occur during VCO switching.

$$f_O = \frac{2.4(V^+ - V_5)}{R_O C_O V^+}$$

where

$2k < R_O < 20k$

and V_5 is voltage between pin 5 and pin 1.
Typical Performance Characteristics

Operating Frequency as a Function of Timing Resistor

Operating Frequency as a Function of Timing Capacitor

Normalized Frequency as a Function of Control Voltage

Power Supply Current

Temperature Stability

VCO Waveforms

Frequency Stability vs Load Resistance (Square Wave Output)

Frequency Stability vs Load Impedance (Triangle Output)

Square Wave Output Characteristics

Triangle Wave Output Characteristics

AC Test Circuit
This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.