LM118/LM218/LM318 Operational Amplifiers

General Description

The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They feature a factor of ten increase in speed over general purpose devices without sacrificing DC performance.

The LM118 series has internal unity gain frequency compensation. This considerably simplifies its application since no external components are necessary for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feedforward compensation will boost the slew rate to over 150V/µs and almost double the bandwidth. Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the 0.1% settling time to under 1 µs.

The high speed and fast settling time of these op amps make them useful in A/D converters, oscillators, active filters, sample and hold circuits, or general purpose amplifiers. These devices are easy to apply and offer an order of magnitude better AC performance than industry standards such as the LM709.

The LM218 is identical to the LM118 except that the LM218 has its performance specified over a −25˚C to +85˚C temperature range. The LM318 is specified from 0˚C to +70˚C.

Features

- 15 MHz small signal bandwidth
- Guaranteed 50V/µs slew rate
- Maximum bias current of 250 nA
- Operates from supplies of ±5V to ±20V
- Internal frequency compensation
- Input and output overload protected
- Pin compatible with general purpose op amps

Fast Voltage Follower

(Note 1)

Note 1: Do not hard-wire as voltage follower (R1 ≥ 5 kΩ)
Absolute Maximum Ratings (Note 7)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM118/LM218</th>
<th>LM318</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>±20V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation (Note 2)</td>
<td>500 mW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Input Current (Note 3)</td>
<td>±10 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage (Note 4)</td>
<td>±15V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Short-Circuit Duration</td>
<td>Continuous</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operating Temperature Range

<table>
<thead>
<tr>
<th></th>
<th>LM118</th>
<th>LM218</th>
<th>LM318</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>−55˚C to +125˚C</td>
<td>−25˚C to +85˚C</td>
<td>0˚C to +70˚C</td>
</tr>
</tbody>
</table>

Storage Temperature Range

| | −65˚C to +150˚C |

Electrical Characteristics (Note 5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM118/LM218</th>
<th>LM318</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>TA = 25˚C</td>
<td>Min 2 Typ 4 Max 4 10 mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>TA = 25˚C</td>
<td>Min 6 Typ 50 Max 30 200 nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>TA = 25˚C</td>
<td>Min 120 Typ 250 Max 150 500 nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Resistance</td>
<td>TA = 25˚C</td>
<td>Min 1 Typ 3 Max 0.5 3 MΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td>TA = 25˚C</td>
<td>Min 5 Typ 8 Max 5 10 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>TA = 25˚C, V_S = ±15V, V_OUT = ±10V, R_L = 2 kΩ</td>
<td>Min 50 Typ 200 Max 25 200 V/mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slew Rate</td>
<td>TA = 25˚C, V_S = ±15V, A_V = 1 (Note 6)</td>
<td>Min 50 Typ 70 Max 50 70 V/μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Signal Bandwidth</td>
<td>TA = 25˚C, V_S = ±15V</td>
<td>Min 15 Typ 15 Max 15 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>TA = 125˚C</td>
<td>Min 6 Typ 15 Max 15 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset Current</td>
<td></td>
<td>Min 100 Typ 300 Max 300 nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td></td>
<td>Min 500 Typ 750 Max 750 nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td>TA = 125˚C</td>
<td>Min 4.5 Typ 7 Max 4.5 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>V_S = ±15V, V_OUT = ±10V, R_L = 2 kΩ</td>
<td>Min 25 Typ 20 Max 25 20 V/mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>V_S = ±15V, R_L = 2 kΩ</td>
<td>Min ±12 Typ ±13 Max ±12 ±13 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>V_S = ±15V</td>
<td>Min ±11.5 Typ ±11.5 Max ±11.5 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td></td>
<td>Min 80 Typ 100 Max 70 100 dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Voltage Rejection Ratio</td>
<td></td>
<td>Min 70 Typ 80 Max 65 80 dB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 2: The maximum junction temperature of the LM118 is 150˚C, the LM218 is 110˚C, and the LM318 is 110˚C. For operating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of 100˚C/W, junction to ambient, or 20˚C/W, junction to case. The thermal resistance of the dual-in-line package is 100˚C/W, junction to ambient.

Note 3: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.

Note 4: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 5: These specifications apply for ±5V ≤ V_S ≤ ±20V and −55˚C ≤ TA ≤ +125˚C (LM118), −25˚C ≤ TA ≤ +85˚C (LM218), and 0˚C ≤ TA ≤ +70˚C (LM318). Also, power supplies must be bypassed with 0.1 μF disc capacitors.

Note 6: Slew rate is tested with V_S = ±15V. The LM118 is in a unity-gain non-inverting configuration. V_IN is stepped from −7.5V to +7.5V and vice versa. The slew rates between −5.0V and +5.0V and vice versa are tested and guaranteed to exceed 50V/μs.

Note 7: Refer to RETS118X for LM118H and LM118J military specifications.

Note 8: Human body model, 1.5 kΩ in series with 100 pF.
Typical Performance Characteristics

LM118, LM218

Input Current

Voltage Gain

Power Supply Rejection

Input Noise Voltage

Common Mode Rejection

Supply Current

www.national.com
Typical Performance Characteristics
LM118, LM218 (Continued)

Closed Loop Output Impedance

Current Limiting

Input Current

Unity Gain Bandwidth

Voltage Follower Slew Rate

Inverter Settling Time

www.national.com
Typical Performance Characteristics LM118, LM218 (Continued)

Large Signal Frequency Response

Open Loop Frequency Response

Voltage Follower Pulse Response

Large Signal Frequency Response

Open Loop Frequency Response

Inverter Pulse Response

www.national.com
Typical Performance Characteristics

Closed Loop Output Impedance

Current Limiting

Input Current

Unity Gain Bandwidth

Voltage Follower Slew Rate

Inverter Settling Time
Typical Performance Characteristics (LM318 (Continued))

- **Large Signal Frequency Response**
 - $T_a = 25^\circ C$
 - $V_s = \pm 15V$

- **Open Loop Frequency Response**
 - $T_a = 25^\circ C$
 - $V_s = \pm 15V$

- **Voltage Follower Pulse Response**
 - $V_s = \pm 15V$
 - $T_a = 25^\circ C$

- **Inverter Pulse Response**
 - $T_a = 25^\circ C$
 - $V_s = \pm 15V$
Auxiliary Circuits

Feedforward Compensation for Greater Inverting Slew Rate (Note 9)

*Balance circuit necessary for increased slew.

Note 9: Slew rate typically 150V/µs.

Compensation for Minimum Settling Time (Note 10)

Isolating Large Capacitive Loads

Overcompensation

Note 10: Slew and settling time to 0.1% for a 10V step change is 800 ns.
Typical Applications

Fast Voltage Follower
(Note 11)

Integrator or Slow Inverter

\[C_F = \text{Large} \quad (C_F \geq 50 \text{ pF}) \]

Do not hard-wire as integrator or slow inverter; insert a 10k-5 pF network in series with the input, to prevent oscillation.

Note 11: Do not hard-wire as voltage follower (R1 \(\geq 5 \text{ k}\Omega)
Typical Applications (Continued)

Fast Sample and Hold

D/A Converter Using Ladder Network

*Optional — Reduces settling time.
Typical Applications (Continued)

Four Quadrant Multiplier

\[\text{Output zero.} \]
\[\text{"Y" zero} \]
\[+\text{"X" zero} \]
\[\dagger\text{Full scale adjust.} \]

D/A Converter Using Binary Weighted Network

\[\text{*Optional — Reduces settling time.} \]
Typical Applications (Continued)

Fast Summing Amplifier with Low Input Current

![Circuit Diagram]

Wein Bridge Sine Wave Oscillator

![Circuit Diagram]

Instrumentation Amplifier

![Circuit Diagram]

*Gain \(\geq \frac{200K}{R_g} \) for \(1.5K \leq R_g \leq 200K \)

*L1—10V—14 mA bulb ELDEMA 1869
R1 = R2
C1 = C2
\(f = \frac{1}{2\pi R_2 C_1} \)
Connection Diagram

Dual-In-Line Package

Top View
Order Number LM118J/883 (Note 13)
See NS Package Number J14A

Dual-In-Line Package

Top View
Order Number LM118J-8/883 (Note 13),
LM318M or LM318N
See NS Package Number J08A, M08A or N08B

Metal Can Package
(Note 12)

Top View
Order Number LM118H, LM118H/883 (Note 13),
LM218H or LM318H
See NS Package Number H08C

Note 12: Pin connections shown on schematic diagram and typical applications are for TO-5 package.

Note 13: Available per JM38510/10107.
Physical Dimensions inches (millimeters)
unless otherwise noted

Metal Can Package (H)
Order Number LM118H, LM118H/883, LM218H or LM318H
NS Package Number H08C

Ceramic Dual-In-Line Package (J)
Order Number LM118J-8/883
NS Package Number J08A
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Ceramic Dual-In-Line Package (J)
Order Number LM118J/883
NS Package Number J14A

S.O. Package (M)
Order Number LM318M or LM318MX
NS Package Number M08A
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no “Banned Substances” as defined in CSP-9-111S2.
This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.