LM110/LM210/LM310 Voltage Follower

General Description
The LM110 series are monolithic operational amplifiers internally connected as unity-gain non-inverting amplifiers. They use super-gain transistors in the input stage to get low bias current without sacrificing speed. Directly interchangeable with 101, 741 and 709 in voltage follower applications, these devices have internal frequency compensation and provision for offset balancing.

The LM110 series are useful in fast sample and hold circuits, active filters, or as general-purpose buffers. Further, the frequency response is sufficiently better than standard IC amplifiers that the followers can be included in the feedback loop without introducing instability. They are plug-in replacements for the LM102 series voltage followers, offering lower offset voltage, drift, bias current and noise in addition to higher speed and wider operating voltage range.

The LM110 is specified over a temperature range $-55^\circ C \leq T_A \leq +125^\circ C$, the LM210 from $-25^\circ C \leq T_A \leq +85^\circ C$ and the LM310 from $0^\circ C \leq T_A \leq +70^\circ C$.

Features
- Input current: 10 nA max over temperature
- Small signal bandwidth: 20 MHz
- Slew rate: 30 V/μs
- Supply voltage range: ±5V to ±18V

Schematic Diagram
Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 6)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>±18V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation (Note 1)</td>
<td>500mW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage (Note 2)</td>
<td>±15V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Short Circuit Duration (Note 3)</td>
<td>Indefinite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM110</td>
<td>−55°C to +125°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM210</td>
<td>−25°C to +85°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM310</td>
<td>0°C to +70°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Storage Temperature Range −65°C to +150°C
Lead Temperature (Soldering, 10 sec.) 260°C
Soldering Information
Dual-In-Line Package
Soldering (10 sec.) 260°C
Small Outline Package
Vapor Phase (60 sec.) 215°C
Infrared (15 sec.) 220°C
See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices.
ESD rating to be determined.

Electrical Characteristics (Note 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM110</th>
<th>LM210</th>
<th>LM310</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>TA = 25°C</td>
<td>1.5</td>
<td>4.0</td>
<td>1.5</td>
<td>4.0</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>TA = 25°C</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>TA = 25°C</td>
<td>10¹⁰</td>
<td>10¹²</td>
<td>10¹⁰</td>
<td>10¹²</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td></td>
<td>1.5</td>
<td></td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>TA = 25°C, VS = ±15V</td>
<td>0.999</td>
<td></td>
<td>0.999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOUT = ±10V, R₁ = 8 kΩ</td>
<td>0.999</td>
<td></td>
<td>0.999</td>
<td></td>
</tr>
<tr>
<td>Output Resistance</td>
<td>TA = 25°C</td>
<td>0.75</td>
<td>2.5</td>
<td>0.75</td>
<td>2.5</td>
</tr>
<tr>
<td>Supply Current</td>
<td>TA = 25°C</td>
<td>3.9</td>
<td>5.5</td>
<td>3.9</td>
<td>5.5</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td></td>
<td>6.0</td>
<td></td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Offset Voltage Temperature Drift</td>
<td>−55°C ≤ TA ≤ +85°C</td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>+85°C ≤ TA ≤ 125°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0°C ≤ TA ≤ +70°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td></td>
<td>10</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>VS = ±15V, VOUT = ±10V</td>
<td>0.999</td>
<td></td>
<td>0.999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R₁ = 10 kΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage Swing (Note 5)</td>
<td>VS = ±15V, R₁ = 10 kΩ</td>
<td>±10</td>
<td></td>
<td>±10</td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td>TA = 125°C</td>
<td>2.0</td>
<td>4.0</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Supply Voltage Rejection Ratio</td>
<td>±5V ≤ VS ≤ ±18V</td>
<td>70</td>
<td>80</td>
<td>70</td>
<td>80</td>
</tr>
</tbody>
</table>

Note 1: The maximum junction temperature of the LM110 is 150°C, of the LM210 is 100°C, and of the LM310 is 85°C. For operating at elevated temperatures, devices in the HO8 package must be derated based on a thermal resistance of 165°C/W, junction to ambient, or 22°C/W, junction to case. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit for the LM110 and LM210 is allowed for case temperatures to 125°C and ambient temperatures to 70°C, and for the LM310, 70°C case temperature or 55°C ambient temperatures. It is necessary to insert a resistor greater than 2 kΩ in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted. R₁ = 5k min, 10k typical is recommended for dynamic stability in all applications.

Note 4: These specifications apply for ±5V ≤ VS ≤ ±18V and −55°C ≤ TA ≤ 125°C for the LM110, −25°C ≤ TA ≤ 85°C for the LM210, and 0°C ≤ TA ≤ 70°C for the LM310 unless otherwise specified.

Application Hint

The input must be driven from a source impedance of typically 10 kΩ (5 kΩ min.) to maintain stability. The total source impedance will be reduced at high frequencies if there is stray capacitance at the input pin. In these cases, a 10 kΩ resistor should be inserted in series with the input, physically close to the input pin to minimize the stray capacitance and prevent oscillation.
Typical Performance Characteristics (LM110/LM210)

- **Input Current**
- **Output Noise Voltage**
- **Large Signal Pulse Response**

- **Voltage Gain and Phase Lag**
- **Voltage Gain and Phase Lag**

- **Output Resistance**
- **Symmetrical Output Swing**

- **Positive Output Swing**
- **Large Signal Frequency Response**

- **Power Supply Rejection**
- **Supply Current**

TL/H/7761–28
Typical Performance Characteristics (LMS10)

- **Input Current**
- **Output Noise Voltage**
- **Large Signal Pulse Response**
- **Voltage Gain and Phase Lag**
- **Voltage Gain and Phase Lag**
- **Voltage Gain**
- **Output Resistance**
- **Symmetrical Output Swing**
- **Positive Output Swing**
- **Large Signal Frequency Response**
- **Power Supply Rejection**
- **Supply Current**
Auxiliary Circuits

Offset Balancing Circuit

Increasing Negative Swing Under Load

*May be added to reduce internal dissipation

Typical Applications

Differential Input Instrumentation Amplifier

Fast Integrator with Low Input Current
Typical Applications (Continued)

Fast Inverting Amplifier with High Input Impedance

Comparator for Signals of Opposite Polarity

Zero Crossing Detector
Typical Applications (Continued)

Driver for A/D Ladder Network

Buffer for Analog Switch*

*Switch substrates are boot-strapped to reduce output capacitance of switch.
Typical Applications (Continued)

Comparator for AC Coupled Signals

High Input Impedance AC Amplifier

Comparator for A/D Converter Using a Binary-Weighted Network
Typical Applications (Continued)

Bilateral Current Source

\[I_{out} = \frac{R_3}{R_1 + R_5} V_{in} \]

\[R_3 = R_4 + R_5 \]

\[R_1 = R_2 \]

Comparator for A/D Converter Using a Ladder Network

Sine Wave Oscillator

\[f_0 = 10 \text{ kHz} \]
Typical Applications (Continued)

Low Pass Active Filter

![Low Pass Active Filter Diagram]

*Values are for 10 kHz cutoff. Use silvered mica capacitors for good temperature stability.

High Pass Active Filter

![High Pass Active Filter Diagram]

*Values are for 100 Hz cutoff. Use metalized polycarbonate capacitors for good temperature stability.

Simulated Inductor

![Simulated Inductor Diagram]

L = R1 R2 C1
Typical Applications (Continued)

Adjustable Q Notch Filter

\[f_o = \frac{1}{2\pi R_1 C_1} \]
\[R_1 = R_2 = 2R_3 \]
\[C_1 = C_2 = C_3/2 \]

Bandpass Filter

Sample and Hold

¹Use capacitor with polycarbonate teflon or polyethylene dielectric
Typical Applications (Continued)

Buffered Reference Source

Low Drift Sample and Hold*

Variable Capacitance Multiplier

\[C = \left(1 + \frac{R_2}{R_1} \right) C_1 \]
Connection Diagrams

Metal Can Package

Package is connected to Pin 4 (V^)

Order Number LM110H, LM210H or LM310H
LM110H/883*

See NS Package Number H08C

Dual-In-Line Package

Order Number LM110J, LM210J, LM310J or LM110J/883*

See NS Package Number J14A

*Available per SMD # 5962-8750601
Physical Dimensions inches (millimeters)

Metal Can Package (H)
Order Number LM110H, LM110H/883, LM210H or LM310H
NS Package Number H08C

Dual-In-Line Package (J)
Order Number LM110J-8/883
NS Package Number J08A
Physical Dimensions inches (millimeters) (Continued)

Ceramic Dual-In-Line Package (J)
Order Number LM110J/883
NS Package Number J14A

S.O. Package (M)
Order Number LM310M
NS Package Number M08A
LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation
1111 West Bardin Road
Arlington, TX 76017
Tel: 1(800) 272-9959
Fax: 1(800) 737-7018

National Semiconductor Europe
Postal Code: 61175
Fax: (+49) 0-180-350 85 86
Email: onwga@nsc.com
Deutsch Tel: (+49) 0-180-350 85 85
English Tel: (+49) 0-180-350 85 86
Français Tel: (+49) 0-180-352 78 32
Italiano Tel: (+49) 0-180-353 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Shun Tak Centre, 5 Canton Rd.
Tsimshatsui, Kowloon, Hong Kong
Tel: (852) 2737-1600
Fax: (852) 2736-9960

French Tel: (+49) 0-180-350 85 86

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.