LF411
Low Offset, Low Drift JFET Input Operational Amplifier

General Description
These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed input offset voltage drift. They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF411 is pin compatible with the standard LM741 allowing designers to immediately upgrade the overall performance of existing designs.

These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage and drift, low input bias current, high input impedance, high slew rate and wide bandwidth.

Features
- Internally trimmed offset voltage: 0.5 mV(max)
- Input offset voltage drift: 10 µV/˚C(max)
- Low input bias current: 50 pA
- Low input noise current: 0.01 pA/√Hz
- Wide gain bandwidth: 3 MHz(min)
- High slew rate: 10V/µs(min)
- Low supply current: 1.8 mA
- High input impedance: 10^{12}Ω
- Low total harmonic distortion: ≤0.02%
- Low 1/f noise corner: 50 Hz
- Fast settling time to 0.01%: 2 µs

Ordering Information
LF411XYZ
X indicates electrical grade
Y indicates temperature range
“M” for military
“C” for commercial
Z indicates package type
“H” or “N”

Typical Connection

Connection Diagrams
Metal Can Package

Dual-In-Line Package

Note: Pin 4 connected to case.

Top View
Order Number LF411ACH
or LF411MH/883 (Note 11)
See NS Package Number H08A

Top View
Order Number LF411ACN, LF411CN
See NS Package Number N08E

Bi-FET II™ is a trademark of National Semiconductor Corporation.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LF411A</th>
<th>LF411</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OS}</td>
<td>Input Offset Voltage</td>
<td>$R_S=10\ \text{k}\Omega, \ T_A=25^\circ\text{C}$</td>
<td>0.3</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>$\Delta V_{OS}/\Delta T$</td>
<td>Average TC of Input Offset Voltage</td>
<td>$R_S=10\ \text{k}\Omega$ (Note 6)</td>
<td>7</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Input Offset Current</td>
<td>$V_S=\pm 15\ \text{V}$ (Notes 5, 7)</td>
<td>$T_A=25^\circ\text{C}$</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_A=70^\circ\text{C}$</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_A=125^\circ\text{C}$</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>I_B</td>
<td>Input Bias Current</td>
<td>$V_S=\pm 15\ \text{V}$ (Notes 5, 7)</td>
<td>$T_A=25^\circ\text{C}$</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_A=70^\circ\text{C}$</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_A=125^\circ\text{C}$</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>R_{IN}</td>
<td>Input Resistance</td>
<td>$T_A=25^\circ\text{C}$</td>
<td>10^{12}</td>
<td>10^{12}</td>
<td>Ω</td>
</tr>
<tr>
<td>A_{VOL}</td>
<td>Large Signal Voltage Gain</td>
<td>$V_S=\pm 15\ \text{V}, \ V_O=\pm 10\ \text{V}, \ R_L=2k, \ T_A=25^\circ\text{C}$</td>
<td>50</td>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over Temperature</td>
<td>25</td>
<td>200</td>
<td>15</td>
</tr>
<tr>
<td>V_O</td>
<td>Output Voltage Swing</td>
<td>$V_S=\pm 15\ \text{V}, \ R_L=10k$</td>
<td>± 12</td>
<td>± 13.5</td>
<td>± 12</td>
</tr>
<tr>
<td>V_{CM}</td>
<td>Input Common-Mode Voltage Range</td>
<td>$\pm 16, \ +19.5$</td>
<td>$\pm 11, \ +14.5$</td>
<td>$\pm 16.5, \ -11.5$</td>
<td>V</td>
</tr>
<tr>
<td>$CMRR$</td>
<td>Common-Mode Rejection Ratio</td>
<td>$R_S=\leq 10k$</td>
<td>80</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>$PSRR$</td>
<td>Supply Voltage Rejection Ratio</td>
<td>(Note 8)</td>
<td>80</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>I_S</td>
<td>Supply Current</td>
<td></td>
<td>1.8</td>
<td>2.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>

AC Electrical Characteristics (Note 5)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LF411A</th>
<th>LF411</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Slew Rate</td>
<td>$V_S=\pm 15\ \text{V}, \ T_A=25^\circ\text{C}$</td>
<td>10</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>GBW</td>
<td>Gain-Bandwidth Product</td>
<td>$V_S=\pm 15\ \text{V}, \ T_A=25^\circ\text{C}$</td>
<td>3</td>
<td>4</td>
<td>2.7</td>
</tr>
<tr>
<td>e_n</td>
<td>Equivalent Input Noise Voltage</td>
<td>$T_A=25^\circ\text{C}, \ R_S=100\Omega, \ f=1\ \text{kHz}$</td>
<td>25</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>I_n</td>
<td>Equivalent Input Noise Current</td>
<td>$T_A=25^\circ\text{C}, \ f=1\ \text{kHz}$</td>
<td>0.01</td>
<td>0.01</td>
<td>pA/\sqrt{\text{Hz}}</td>
</tr>
</tbody>
</table>
AC Electrical Characteristic (Note 5) (Continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LF411A</th>
<th>LF411</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>THD</td>
<td>Total Harmonic Distortion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.

Note 3: For operating at elevated temperature, these devices must be derated based on a thermal resistance of \(\theta \). The thermal resistance is designated by the position just before the package type in the device number. A “C” indicates the commercial temperature range and an “M” indicates the military temperature range. The military temperature range is available in “H” package only.

Note 4: These devices are available in both the commercial temperature range 0°C ≤ \(T_A \) ≤ 70°C and the military temperature range −55°C ≤ \(T_A \) ≤ 125°C. The temperature range is designated by the position just before the package type in the device number. A “C” indicates the commercial temperature range and an “M” indicates the military temperature range.

Note 5: Unless otherwise specified, the specifications apply over the full temperature range and for \(V_S = \pm 20V \) for the LF411A and for \(V_S = \pm 15V \) for the LF411. \(\frac{V_D}{V_S} \), \(I_P \), and \(I_Q \) are measured at \(V_{CM} = 0 \).

Note 6: The LF411A is 100% tested to this specification. The LF411 is sample tested to insure at least 90% of the units meet this specification.

Note 7: The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, \(T_j \). Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, \(P_D = T_A + \theta_{JA} P_D \) where \(\theta_{JA} \) is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.

Note 8: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice, from ±15V to ±5V for the LF411 and from ±20V to ±5V for the LF411A.

Note 10: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

Typical Performance Characteristics

![Input Bias Current](00585511)

![Input Bias Current](00585512)
Typical Performance Characteristics (Continued)

Supply Current

Positive Common-Mode Input Voltage Limit

Negative Common-Mode Input Voltage Limit

Positive Current Limit

Negative Current Limit

Output Voltage Swing
Typical Performance Characteristics (Continued)

Output Voltage Swing

Gain Bandwidth

Bode Plot

Slew Rate

Distortion vs Frequency

Undistorted Output Voltage Swing
Typical Performance Characteristics (Continued)

Open Loop Frequency Response

Common-Mode Rejection Ratio

Power Supply Rejection Ratio

Equivalent Input Noise Voltage

Open Loop Voltage Gain

Output Impedance
Typical Performance Characteristics (Continued)

Pulse Response \(R_L = 2 \, k\Omega, \, C_L = 10 \, \text{pF} \)

- **Small Signal Inverting**
- **Small Signal Non-Inverting**
- **Large Signal Inverting**
- **Large Signal Non-Inverting**
Application Hints
The LF411 series of internally trimmed JFET input op amps (BI-FET II™) provide very low input offset voltage and guaranteed input offset voltage drift. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier may be forced to a high state.

The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3V of the negative supply, an increase in input offset voltage may occur.

The LF411 is biased by a zener reference which allows normal circuit operation on ±4.5V power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.

The LF411 will drive a 2 kΩ load resistance to ±10V over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize “pick-up” and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency, a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.
Typical Applications

High Speed Current Booster

- PNP=2N2905
- NPN=2N2219 unless noted
- TO-5 heat sinks for Q6-Q7
Typical Applications (Continued)

10-Bit Linear DAC with No V_{OS} Adjust

![Circuit Diagram](00565532)

$$V_{OUT} = -V_{REF} \left(\frac{A_1}{2} + \frac{A_2}{4} + \frac{A_3}{8} + \cdots + \frac{A_{10}}{1024} \right)$$

$-10V \leq V_{REF} \leq 10V$

$0 \leq V_{OUT} \leq -\frac{1023}{1024} V_{REF}$

where $A_N=1$ if the A_N digital input is high
$A_N=0$ if the A_N digital input is low

Single Supply Analog Switch with Buffered Output

![Circuit Diagram](00565533)
Note 11: Available per JM38510/11904

Detailed Schematic
Physical Dimensions inches (millimeters) unless otherwise noted

Metal Can Package (H)
Order Number LF411MH/883 or LF411ACH
NS Package Number H08A

Molded Dual-In-Line Package (N)
Order Number LF411ACN or LF411CN
NS Package Number N08E
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no “Banned Substances” as defined in CSP-9-111S2.