Problem Set #1.

(1.1) Read the article at the following web site:

"www.memagazine.org/backissues/may97/features/mechtron/mechtron.html"

Write a 1-paragraph statement in your own words to describe "mechatronics". Imagine you are explaining it to your grandparents, none of whom have a technical background.

(1.2) Do text problem 1-2.

![Graph showing speed vs throttle](image)

Normal driver moves throttle position (via pedal) around the desired speed position. Also, there are ups and downs in the road, wind loads might vary, etc.

Inputs: road, elevation, wind conditions, desired speed

Outputs: actual speed
(1.3) Do text problem 2-3.

\[\frac{\tau}{\omega} \text{PUMP} \frac{P}{Q} \]

Inputs: P and \(\omega \)

Outputs: Q and \(\tau \)

(1.4) Do text problem 2-8.

\[\frac{dE}{dt} = P. \quad \text{If } P(t) \text{ is constant,} \]

\[E = P \times t. \]

\[100 \times t = 10 \times 9.8 \times 30 \quad \{\text{all units} \text{ MKS}\} \]

\[t = 29.4 \text{ s} \]

(1.5) Do text problem 2-10.

\[\tau \cdot \omega = P \cdot Q \]

\[w = \frac{P}{\tau} \times Q = \frac{7.0 \times 10^6 \text{ N/m}^2}{5.0 \text{ N-m}} \times Q \]

\[w = 1.4 \times 10^6 \text{ Q} \]

[\(w \) = \(\text{rad s}^{-1} \)]
(1.6) Assume we are matching a marine engine and a propeller. "T" denotes torque; "w" denotes angular velocity. Subscript "s" denotes supply (i.e., engine); subscript "d" denotes demand (i.e., propeller).

Supply characteristic: \[T_s = a_w^2 + b_w + c \]

Lab data show that
\[T_s = 1000 \quad \text{at} \quad w = 100 \]
\[T_s = 0 \quad \text{at} \quad w = 0 \]
\[T_s = 0 \quad \text{at} \quad w = 200 \]

Demand characteristic: \[T_d = C_d w^2 \]

Lab data show that \[T_d = 850 \quad \text{at} \quad w = 120 \]

Where are the torque-angular_velocity operating points?

Use MATLAB to verify your solution to the problem. Include a plot of the supply and demand curves. Make a hard copy of your MATLAB results to hand in.
HW #1 PROBLEM 6: Analytical Solution.

ENGINE $\frac{T_s}{W} \rightarrow \frac{T_d}{W} \rightarrow$ PROP $T_s = T_d$

(1) Find C_d from the data:

$$850 = C_d \times (120)^2 \Rightarrow C_d = 0.059$$

(2) Find a, b, c from the data:

(i) $0 = a \cdot 0 + b \cdot 0 + c \Rightarrow c = 0$

(ii) $0 = a(200)^2 + b(200)$

(iii) $1000 = a(100)^2 + b(100)$

$$0 = 200a + b \quad \Rightarrow \quad a = -0.1$$
$$10 = 100a + b \quad \Rightarrow \quad b = 20$$

(3) Thus $T_d = 0.059 \times w^2$ and $T_s = -0.1w^2 + 20w$

At the operating point $T_d = T_s$, so

$w = 125.8 \ (or \ w = 0)$

and $T_d = T_s = 934$.
% File: Marine engine / propeller matching
% hw01 problem 6
%
w= [0:1:200]; % set up the speed vector (omega)
%
% Set up the Td vector
Cd= 0.059 % from Cd= 850/(120^2), data given
for i= 1:1:201
 Td(i)= Cd*(w(i)^2);
end
%
% Set up the Ts vector
% You could use MATLAB to find coefficients a,b,c from these data
% 1000= a*(100^2) +b*100 +c
% 0= a*0 +b*0 +c
% 0= a*(200^2) +b*200 +c
% A= [(100^2), 100, 1;
% 0 , 0, 1;
% (200^2), 200, 1]
% u= [1000, 0, 0]' % note transpose to make a column vector
% x= inv(A)*u % solves A*x= u
% a= x(1)
% b= x(2)
% c= x(3)
% a= -0.1
% b= 20.0
% c= 0.0
for i= 1:1:201
 Ts(i)= a*(w(i)^2) +b*w(i) +c;
end
%
plot(w,Ts,'k- ',w,Td,'k-- ');
grid on;
title('engine-propeller matching');
legend('Ts','Td','Location','NorthWest');
xlabel('w, speed');
ylabel('Ts, Td, torques');
% pause;
%
print table near intersection to get better data
string1= 'w, Td, Ts'
for i= 1:1:11
 j= i+119;
 v(i,1)=w(j);
 v(i,2)=Td(j);
 v(i,3)=Ts(j);
end
v
%
Output from running the .m file:
(listed in 2 columns)

<table>
<thead>
<tr>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>119.0000 835.4990 963.9000</td>
</tr>
<tr>
<td>120.0000 849.6000 960.0000</td>
</tr>
<tr>
<td>121.0000 863.8190 955.9000</td>
</tr>
<tr>
<td>122.0000 878.1560 951.6000</td>
</tr>
<tr>
<td>123.0000 892.6110 947.1000</td>
</tr>
<tr>
<td>124.0000 907.1840 942.4000</td>
</tr>
<tr>
<td>125.0000 921.8750 937.5000</td>
</tr>
<tr>
<td>126.0000 936.6840 932.4000</td>
</tr>
<tr>
<td>127.0000 951.6110 927.1000</td>
</tr>
<tr>
<td>128.0000 966.6560 921.6000</td>
</tr>
<tr>
<td>129.0000 981.8190 915.9000</td>
</tr>
</tbody>
</table>

EngineMatching 2 printed 1/16/2007