Application of the Finite Element Method Using MARC avidntat 10-1

Chapter 10: Composite Micromechanics

10.1 Problem Statement and Objectives

Given the micromechanical geometry and the materiggaties of each constituent, it is possible to
estimate the effective composite material propertiesthe micromechanical stress/strain state of a
composite material. The objectives of this project &t) to determine the effective stiffness

propertie€], E;, v;,, Vv, of a unidirectional composite material and (2) to deifenthe strain

concentration factor in the matrix region when tlwemposite material is subjected to a uniform
transverse normal strain in the direction.

NOTE TO ME 424 CLASS: Only do Part (2).

10.2 Background

A composite material is often defined as a combinatiotwo or more materials fabricated in such a
way that the individual constituents (materials) calh s readily identified in the final form. If
designed properly, this combination of materials yieldsomposite material that exhibits the best
properties of each constituent as well as some advanisgeoperties not exhibited by the individual
constituents. One example of such a material is a aotehnal fiber reinforced composite, which is
often used in aerospace structures. An idealized micr@aneeth view of a unidirectional fiber
reinforced composite material is shown in Figure 10.1thé&se materials, the fibers have a very small
diameter and a very high length-to-diameter ratio. geesmetry yields excellent stiffness and
strength characteristics in the fiber, since thestaty tend to align along the fiber axis and there are
fewer internal and surface defects than in the bulk naate

The properties of commonly used fiber materials arengnelable 10.1. These fibers are embedded
in another material, often called the matrix mateiéatrix materials may be polymers, metals, or
ceramics. Some common matrix material propertiegiaes in Table 10.2.
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Figure 10.1 I dealized representation of a unidirectional fiber-reinforced material.
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Table 10.1 Fiber and Wire Properties
Fiber Density, p Tensile S/p Tensile E/p
or Ib/in® (kN/m?) Strength,S 10°in Stiffness,E 10" in
Wire 10’ Ib/in? (km) 10° Ib/in? (10° m)
(GPa) (GPa)
Aluminum .097 (26.3) 90 (.62) 9 (24) 10.6 (73) 11 (2.8)
Titanium 170 (46.1) 280 (1.9) 16 (41) 16.7 (115 10 (2.5
Steel .282 (76.6) 600 (4.1) 21 (54) 30 (207) 11 (2.8
E-Glass .092 (25.0) 500 (3.4) 54 (136) 10.5 (72 11 (2.8
S-Glass .090 (24.4) 700 (4.8) 78 (197) 12.5 (86 14 (3.5)
Carbon .051 (13.8) 250 (1.7) 49 (123) 27 (190 53 (14
Beryllium .067 (18.2) 250 (1.7) 37 (93) 44 (300) 66 (16)
Boron .093 (25.2) 500 (3.4) 54 (137) 60 (400) 66 (16)
Graphite .051 (13.8) 250 (1.7) 49 (123) 37 (250 72 (18
Table 10.2 Thermosetting Resin Matrix Propefties
Material Young's Poisson’s Tensile Strength] Compressive
Modulus,E Ratio, v (MPa) Strength (MPa)
(GPa)

Polyester 3.2 0.36 65 130
Epoxy 3.0 0.37 85 130

Due to the high axial stiffness of the fibers, th#ngtss of a unidirectional fiber reinforced composite
material is very high in the fiber direction and rielaly low in the directions perpendicular to the

fibers. Hence a unidirectional fiber reinforced comgmosnaterial is not isotropic. The stiffness

properties are approximately the same in theadXd X directions, but these properties are different
than those in the Xdirection. This type of material is classifiedteansversely isotropic, since there

is a plane within which the properties are isotropidotal of five material constants are required to
completely define the stress-strain relations foramgsversely isotropic material. The stress-strain
relations for this material are:

! Adapted from R.M. Jones, Mechanics of Composite MaiterSecond Edition, Taylor & Francis, 1999.
2 Adapted from R.A. Shenoi and J.F. Wellicome, “Compdsigerials in Maritime Structures,” Volume 1:
Fundamental Aspects, Cambridge University Press, 1993.
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Note that the composite shear stresses and strainmepupled from the normal stresses and strains,
and they are not considered in this study. Inversiah@ihormal stress-strain relations in Equations
(1) yields the normal strain-stress relations:

& Sy S, S|o;

=S, S» Sy [0,

&3 S, Ss S,
()

where[s]=[C]™ and:

1 1 Vi, %
Ec’ S, =—¢» S,=-—% Sp=—2¢.
1

Sll_ Ef’

(4)

E’ and E; are the effective Young's moduli of the compositethe X and X% directions,
respectively. Note thaE; = E; for this material.v;, and v;, are the Poisson’s ratios defined as

£ _
ve =—-—L for o, =¢ and all other stress equal to zero. Thus, foueri@tconstants are needed to
Ei

completely define the normal stress-strain or iststiess relationse;’, E;, v;,, V,,. One additional
constant is needed to define the shear stress-stlations, for a total of five material constants
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In reality, the aligned fibers in a unidirectiorfder reinforced composite material are randomly
spaced within the cross section. For purposes aysis, however, it is often assumed that the giber
are uniformly distributed in a periodic fashion.@dcommon packing pattern is the square array, as
shown in Figure 10.2. This assumption greatly sireplthe micromechanical analysis, as discussed
below.
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Figure 10.2 Cross section of a fiber reinforced composite material with fibers packed in a square array.
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Figure 10.3 Squar e r epresentative volume element (RVE) used in the micromechanical model.

10.3 Analysis Assumptions

The basic assumptions of the analytical model sufelws (see Figures 10.2 and 10.3):
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1. The fibers are: (i) continuous, (ii) straigif) infinitely long in the X; direction, (iv)
perfectly aligned with X axis, (v) circular in cross section, and (vi) aged in a periodic
square array.

The fiber and matrix materials are (i) homogerse (ii) isotropic, and (i) linearly elastic.
The fiber and matrix are perfectly bonded atrtimterface.

Mechanical loads are applied at infinity.

Loads and material properties do not vary atbegX; direction.

abrown

Assumption 1 ensures that many planes of geomg&gnunetry exist in the composite material. In
addition, vertical and horizontal lines such as ABB’, CC’ and DD’ in Figure 10.2 will remain
straight during deformation.

If it is also assumed that the region of interastaisufficient distance from the points of load

application or geometric constraint (assumption then every fiber and its surrounding matrix

material will experience the same deformation urafgplied loads. Thus, only a single fiber and its
surrounding matrix region need be analyzed. Inroiherds, the response of the entire composite
material may be studied by considering a singleesgmtative volume element (RVE), as shown in
Figure 10.3.

10.4 M athematical |dealization

Based on the assumptions above, a state of plesie & assumed. Further, it is clear from Figure
10.3 that vertical and horizontal planes of symgnettist within the RVE. Since the loads are also
symmetric about these planes, it is necessary tehwnly one quarter of the RVE, as shown in
Figure 10.4. As noted, the edges of the RVE willa@ straight during all deformations, so boundary
conditions should be applied in such a way as totaia this condition. In other words, displacement
boundary conditions are used instead of tractionitions on the edges.

10.5 Finite Element M odd

The 2D finite element model of this structure sdoog developed using 2D plane strain four-noded
guadrilateral finite elements. A quarter-modelidtidoe used.
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Figure 10.4 Quarter model of the RVE to be used in the finite element analysis.

10.6 Validation

In order to validate the analysis, some simple haaidulations should be performed to estimate the
effective composite properties. The results oféhemculations will be used to assess the valwhity
the finite element results (i.e., to make sure thatfinite element results are reasonable andodo n
contain any large error due to a simple mistakbéenmodel).

Based on mechanics of materials approaches, thetiedf material properties of a unidirectional fibe
reinforced composite material can be estimatedlksis®;

% For more details, see R.M. Jones, Mechanics of Csitephlaterials, Second Edition, Taylor & Francis, 1999.
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Elc = Efo + Eme

(5)
c Ef Em
E2 = @ -
VmEf +Vf Em
(6)

c —
I/12 - I/me + vaf

(7)

where E;, v, V; and E,, v,, V, are the moduli, Poisson’s ratios, and volume ipast of the
fiber and matrix materials, respectively. The vaduiractions are defined as:

_ Fiber volume V. = Matrix volume

" Tota volume’ ™ Tota volume

(8)

E’ is a fiber dominated property, and it is accusafeedicted by Equation (5)E; and v;, are
influenced strongly by the matrix properties antbdeations, and these composite properties are not
always predicted accurately by the formulae in Equa (6) and (7).

10.7 Procedurefor Calculating Effective Composite Properties

The effective composite properties are calculatedgplying a unit strain in one direction (with all
other strains set to zero) and then calculatingréselting average stresses. In this sectign,

indicates the average stress in the i-th direction.

For example, ife, = land all other strains are zero, then Equatiolyi€lds:

C12 = ﬁl ’ C22 = 52 ! C23 = _3

(9)
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o, and g,can be calculated directly from the finite elemesgults, as discussed below. If a three-
dimensional analysis were performed, tf@ncould be calculated in a similar manner. In thespnt
case, howeverg, must be calculated using the known condition ahelstrain. For a state of plane
strain as assumed here, note that the first of itmsa(3) yields (fore, = 0

Q

0=3,0,+S,0, +S5,0; = g, :_i(ﬁz"'ﬁs)
1

(10)

It is assumed here that the predictionEgf and v;, in Equations (5) and (7) are sufficiently accuyate
so that these values can be employed in Equatin®(calculats&, and S, for use in Equation
(10). If E/ is calculated using Equation (5), th€pn can now be calculated as follows:

Now all four of the material constan;,C,,,C,,,C,, are known, withC,; and C,, approximated

based on the use of Equations (5) and (7). Thesavef[C| is now readily found afS|=[C]™, and
the remaining material constais, v;,, v,, are obtained using Equations (4).

The above procedure requires the calculation obtlegage stresses, and g, that result from the

application of a uniaxial strain statg = . The boundary conditions for this case are showkigure
10.5. After generating the finite element solutionthis problem, the reaction forces along edge TQ
(or RS) can be summed to obtain the resultant fiortdee X direction due to the applied strain state.
Dividing this force by the area over which it aaii yield the average stress, . In a similar manner,
the average stresg, that results from the same loading state can leir@al by summing the

reaction forces in the pdirection along edge ST (or QR) and dividing tieisultant force by the area
over which it acts.
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Figure 10.5 Boundary conditionsto be used in the finite element analysisfor a uniaxial strain state £, =1.
Note that directions X, and X3 may be labeled differently within the finite element software.

10.8 Calculating the Strain Concentration Factor

When a uniaxial transverse strain is applied toomposite, as shown in Figure 10.5, the strain
encountered by the fiber and matrix will be differéhan the strain applied globally. This is duete
material stiffness mismatch and the geometry oftihe constituents. By applying the strain state
shown in Figure 10.5 (unit strain in the 2-direnjiothe strain concentration factor is the maximum
(principal) strain in either the fiber or the matrirhis strain can be obtained from a finite eletmen
model of the micromechanical section shown in idneré.



