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Chapter 10: Composite Micromechanics 
 
 
10.1 Problem Statement and Objectives 
 
Given the micromechanical geometry and the material properties of each constituent, it is possible to 
estimate the effective composite material properties and the micromechanical stress/strain state of a 
composite material. The objectives of this project are (1) to determine the effective stiffness 
properties cE1 , cE2 , c

12ν , c
23ν  of a unidirectional composite material and (2) to determine the strain 

concentration factor in the matrix region when the composite material is subjected to a uniform 
transverse normal strain in the X2 direction.  
 
NOTE TO ME 424 CLASS: Only do Part (2). 
 
 
10.2 Background 
 
A composite material is often defined as a combination of two or more materials fabricated in such a 
way that the individual constituents (materials) can still be readily identified in the final form. If 
designed properly, this combination of materials yields a composite material that exhibits the best 
properties of each constituent as well as some advantageous properties not exhibited by the individual 
constituents. One example of such a material is a unidirectional fiber reinforced composite, which is 
often used in aerospace structures. An idealized micromechanical view of a unidirectional fiber 
reinforced composite material is shown in Figure 10.1. In these materials, the fibers have a very small 
diameter and a very high length-to-diameter ratio. This geometry yields excellent stiffness and 
strength characteristics in the fiber, since the crystals tend to align along the fiber axis and there are 
fewer internal and surface defects than in the bulk material.  
 
The properties of commonly used fiber materials are given in Table 10.1. These fibers are embedded 
in another material, often called the matrix material. Matrix materials may be polymers, metals, or 
ceramics. Some common matrix material properties are given in Table 10.2. 
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Figure 10.1 Idealized representation of a unidirectional fiber-reinforced material. 
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Table 10.1 Fiber and Wire Properties1 
Fiber 

or 
Wire 

Density, ρ  
lb/in3 (kN/m3) 

Tensile 
Strength, S 
103 lb/in2 

(GPa) 

ρS  
105 in 
(km) 

Tensile 
Stiffness, E 
106 lb/in2 

(GPa) 

ρE  
107 in 

(106 m) 

Aluminum .097 (26.3) 90 (.62) 9 (24) 10.6 (73) 11 (2.8) 
Titanium .170 (46.1) 280 (1.9) 16 (41) 16.7 (115) 10 (2.5) 
Steel .282 (76.6) 600 (4.1) 21 (54) 30 (207) 11 (2.8) 
E-Glass .092 (25.0) 500 (3.4) 54 (136) 10.5 (72) 11 (2.8) 
S-Glass .090 (24.4) 700 (4.8) 78 (197) 12.5 (86) 14 (3.5) 
Carbon .051 (13.8) 250 (1.7) 49 (123) 27 (190) 53 (14) 
Beryllium .067 (18.2) 250 (1.7) 37 (93) 44 (300) 66 (16) 
Boron .093 (25.2) 500 (3.4) 54 (137) 60 (400) 66 (16) 
Graphite .051 (13.8) 250 (1.7) 49 (123) 37 (250) 72 (18) 
 

Table 10.2 Thermosetting Resin Matrix Properties2 
Material Young’s 

Modulus, E 
(GPa) 

Poisson’s 
Ratio, ν  

Tensile Strength 
(MPa) 

Compressive 
Strength (MPa) 

Polyester 3.2 0.36 65 130 
Epoxy 3.0 0.37 85 130 
 
Due to the high axial stiffness of the fibers, the stiffness of a unidirectional fiber reinforced composite 
material is very high in the fiber direction and relatively low in the directions perpendicular to the 
fibers. Hence a unidirectional fiber reinforced composite material is not isotropic. The stiffness 
properties are approximately the same in the X2 and X3 directions, but these properties are different 
than those in the X1 direction. This type of material is classified as transversely isotropic, since there 
is a plane within which the properties are isotropic. A total of five material constants are required to 
completely define the stress-strain relations for a transversely isotropic material. The stress-strain 
relations for this material are: 
 

                                                        
1 Adapted from R.M. Jones, Mechanics of Composite Materials, Second Edition, Taylor & Francis, 1999. 
2 Adapted from R.A. Shenoi and J.F. Wellicome, “Composite Materials in Maritime Structures,” Volume 1: 
Fundamental Aspects, Cambridge University Press, 1993. 
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γτ CC −= , 135513 γτ C= , 135513 γτ C=        

(2) 
 
Note that the composite shear stresses and strains are uncoupled from the normal stresses and strains, 
and they are not considered in this study. Inversion of the normal stress-strain relations in Equations 
(1) yields the normal strain-stress relations: 
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where [ ] [ ] 1−= CS  and: 
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cE1  and cE2  are the effective Young’s moduli of the composite in the X1 and X2 directions, 

respectively. Note that cc EE 23 =  for this material. c
12ν  and c

23ν  are the Poisson’s ratios defined as 

i

jc
ij ε

ε
ν −=  for σσ =i  and all other stress equal to zero. Thus, four material constants are needed to 

completely define the normal stress-strain or strain-stress relations: cE1 , cE2 , c
12ν , c

23ν . One additional 

constant is needed to define the shear stress-strain relations, for a total of five material constants. 
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In reality, the aligned fibers in a unidirectional fiber reinforced composite material are randomly 
spaced within the cross section. For purposes of analysis, however, it is often assumed that the fibers 
are uniformly distributed in a periodic fashion. One common packing pattern is the square array, as 
shown in Figure 10.2. This assumption greatly simplifies the micromechanical analysis, as discussed 
below. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.2 Cross section of a fiber reinforced composite material with fibers packed in a square array. 
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10.3 Analysis Assumptions 
 
The basic assumptions of the analytical model are as follows (see Figures 10.2 and 10.3): 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.3 Square representative volume element (RVE) used in the micromechanical model. 
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1.  The fibers are: (i) continuous, (ii) straight, (iii) infinitely long in the X1 direction,                (iv) 
perfectly aligned with X1 axis, (v) circular in cross section, and (vi) arranged in a periodic 
square array. 

2.  The fiber and matrix materials are (i) homogeneous, (ii) isotropic, and (iii) linearly elastic. 
3.  The fiber and matrix are perfectly bonded at their interface. 
4.  Mechanical loads are applied at infinity. 
5.  Loads and material properties do not vary along the X1 direction. 

 
Assumption 1 ensures that many planes of geometric symmetry exist in the composite material. In 
addition, vertical and horizontal lines such as AA’, BB’, CC’ and DD’ in Figure 10.2 will remain 
straight during deformation. 
 
If it is also assumed that the region of interest is a sufficient distance from the points of load 
application or geometric constraint (assumption 4), then every fiber and its surrounding matrix 
material will experience the same deformation under applied loads. Thus, only a single fiber and its 
surrounding matrix region need be analyzed. In other words, the response of the entire composite 
material may be studied by considering a single representative volume element (RVE), as shown in 
Figure 10.3. 
 
 
10.4 Mathematical Idealization 
 
Based on the assumptions above, a state of plane strain is assumed. Further, it is clear from Figure 
10.3 that vertical and horizontal planes of symmetry exist within the RVE. Since the loads are also 
symmetric about these planes, it is necessary to model only one quarter of the RVE, as shown in 
Figure 10.4. As noted, the edges of the RVE will remain straight during all deformations, so boundary 
conditions should be applied in such a way as to maintain this condition. In other words, displacement 
boundary conditions are used instead of traction conditions on the edges.  
 
 
10.5 Finite Element Model 
 
The 2D finite element model of this structure should be developed using 2D plane strain four-noded 
quadrilateral finite elements.  A quarter-model should be used. 
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10.6 Validation 
 
In order to validate the analysis, some simple hand calculations should be performed to estimate the 
effective composite properties. The results of these calculations will be used to assess the validity of 
the finite element results (i.e., to make sure that the finite element results are reasonable and do not 
contain any large error due to a simple mistake in the model). 
 
Based on mechanics of materials approaches, the effective material properties of a unidirectional fiber 
reinforced composite material can be estimated as follows3: 
 

                                                        
3 For more details, see R.M. Jones, Mechanics of Composite Materials, Second Edition, Taylor & Francis, 1999. 
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Figure 10.4 Quarter model of the RVE to be used in the finite element analysis. 
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ffmm
c VV ννν +=12                                                                                                                                

(7) 
 
where fE , fν , fV  and mE , mν , mV  are the moduli, Poisson’s ratios, and volume fractions of the 

fiber and matrix materials, respectively. The volume fractions are defined as: 
 

 volumeTotal

meFiber volu=fV , 
 volumeTotal

umeMatrix vol=mV        

(8) 
 

cE1  is a fiber dominated property, and it is accurately predicted by Equation (5). cE2  and c
12ν  are 

influenced strongly by the matrix properties and deformations, and these composite properties are not 
always predicted accurately by the formulae in Equations (6) and (7).  
 
 
10.7 Procedure for Calculating Effective Composite Properties 
 
The effective composite properties are calculated by applying a unit strain in one direction (with all 
other strains set to zero) and then calculating the resulting average stresses. In this section, iσ  

indicates the average stress in the i-th direction.  
 
For example, if 12 =ε  and all other strains are zero, then Equation (1) yields: 
 

112 σ=C  , 222 σ=C , 323 σ=C        

(9) 
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2σ  and 3σ can be calculated directly from the finite element results, as discussed below. If a three-

dimensional analysis were performed, then 1σ  could be calculated in a similar manner. In the present 

case, however, 1σ  must be calculated using the known condition of plane strain. For a state of plane 

strain as assumed here, note that the first of Equations (3) yields (for 01 =ε ): 

3122121110 σσσ SSS ++=        �        )( 32
11

12
1 σσσ +−=

S

S
                                                             

(10) 
 
It is assumed here that the prediction of cE1  and c

12ν  in Equations (5) and (7) are sufficiently accurate, 

so that these values can be employed in Equations (4) to calculate11S  and 12S  for use in Equation 

(10). If cE1  is calculated using Equation (5), then 11C  can now be calculated as follows: 
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(11) 
 
Now all four of the material constants 23221211 ,,, CCCC  are known, with 11C  and 12C  approximated 

based on the use of Equations (5) and (7). The inverse of [ ]C  is now readily found as [ ] [ ] 1−= CS , and 

the remaining material constantscE2 , c
12ν , c

23ν  are obtained using Equations (4). 

 
The above procedure requires the calculation of the average stresses 2σ  and 3σ  that result from the 

application of a uniaxial strain state 12 =ε . The boundary conditions for this case are shown in Figure 
10.5. After generating the finite element solution for this problem, the reaction forces along edge TQ 
(or RS) can be summed to obtain the resultant force in the X2 direction due to the applied strain state. 
Dividing this force by the area over which it acts will yield the average stress 2σ . In a similar manner, 

the average stress 3σ  that results from the same loading state can be obtained by summing the 

reaction forces in the X3 direction along edge ST (or QR) and dividing this resultant force by the area 
over which it acts. 
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10.8 Calculating the Strain Concentration Factor 
 
When a uniaxial transverse strain is applied to a composite, as shown in Figure 10.5, the strain 
encountered by the fiber and matrix will be different than the strain applied globally. This is due to the 
material stiffness mismatch and the geometry of the two constituents. By applying the strain state 
shown in Figure 10.5 (unit strain in the 2-direction), the strain concentration factor is the maximum 
(principal) strain in either the fiber or the matrix. This strain can be obtained from a finite element 
model of the micromechanical section shown in the figure.  
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Edge QR: 0,0 233 == τu  

 

Edge RS: 0,2/ 232 == τsu  

 

Edge ST: 0,0 233 == τu  

 

Edge TQ: 0,0 232 == τu  

Figure 10.5 Boundary conditions to be used in the finite element analysis for a uniaxial strain state 12 =ε . 

                    Note that directions X2 and X3 may be labeled differently within the finite element software. 


