A crane is used to lift a pile of logs with center of mass at point D. Make a free-body diagram of the logs and discuss whether or not the system is statically determinate and/or properly constrained.

Solution:

There are 3 unknown scalar forces T_A, T_B, and T_C, provided the geometry is given. Thus there will be 3 unknowns and potentially six equations. However, the 3 forces pass through a common point so the moment equations yield no information. Thus there are 3 equations in 3 unknowns and the system is **statically determinate** but **improperly constrained** as rotation could occur about the point of intersection of the three forces.
5.56 Sketch the free body diagram of the circus tent stake. The stake is mounted on a hard surface by a ball and socket arrangement at point C. Is this system properly constrained? Is it statically indeterminate?

![Figure P5.56](image)

Solution: From the free body diagram there are 5 unknown magnitudes: T_1, T_2, C_x, C_y and C_z, which, with geometry assumed given, can be determined from the 5 equations of equilibrium

$$
\sum F_x = 0, \quad \sum F_y = 0, \quad \sum F_z = 0, \quad \sum M_x = 0, \quad \sum M_y = 0.
$$

Thus the system is **statically determinate**. The sixth equation, $\sum M_y = 0$ is automatically satisfied because all the forces intersect the y-axis, implying that the system is **improperly constrained** as nothing prevents rotation about the y-axis. You may want to point out that this is a two force member.

![Figure S5.56](image)
5.62 A winch system consists of a 0.1-m diameter drum, shaft and motor. Compute the reactions at A and C, and the motor torque M_z required to keep the 100-kg mass in equilibrium. The spindle supports at A and C are thrustless bearings. Neglect any moments at A and C.

Solution: The free-body is given and the equilibrium equations are (unrestrained in z direction)

Further manipulation of the moment equation yields (continued)
\[M_2 \dot{\mathbf{k}} - (0.05)(981) \mathbf{k} + (0.2)(981) \mathbf{i} + (0.4A_x) \mathbf{j} - 0.4A_y \mathbf{i} = 0 \]

or in scalar form

\[k : \quad M_x = 49.05 \text{ Nm} \quad (3) \]
\[j : \quad 0.4A_x = 0 \quad (4) \]
\[i : \quad 196.2 - 0.4A_y = 0 \quad (5) \]

These 5 equations yield \(A_x = C_x = 0, \ A_y = 490.5 \text{ N, } C_y = 490.5 \text{ m.} \)
5.64 A mounting platform is secured in place by a frictionless support at A, a ball and socket at B and a rope at C. The A 100 N gravitational force acts at its geometric center and two boxes sit on the platform modeled by the force $F_1 = 500$ N and $F_2 = 50$ N. Calculate the components of the reaction forces at the supports.

Solution: A free body diagram yields the following equilibrium equations

\[\sum F_x: B_x = 0 \] (1)

(continued)
\[\sum F_y : \quad T_c + B_y + A_y - 650 = 0 \quad (2) \]
\[\sum F_z = B_z = 0 \quad (3) \]
\[\sum M_0 = (0.5\hat{i}) \times T_c \hat{j} + (k \times A_y \hat{j}) + \hat{i} \times (B_y \hat{j}) + k \times (B_{z\hat{j}}) + 0.5(\hat{i} + k) \times (-100\hat{j}) \]
\[+ (0.75\hat{i} + 0.5\hat{k}) \times (-500\hat{j}) + (0.3\hat{i} + 0.6\hat{k}) \times (-50\hat{j}) = 0 \]

Multiplying out the moment terms (with \(B_x = B_z = 0 \)) yields from
\[\hat{i} : -A_y - B_y + 330 = 0 \]
or
\[A_y + B_y = 330 \quad (4). \]

From
\[\hat{k} : 0.5T_c + B_y = 440 \quad (5) \]

Solving 1-5 yields
\[T_c = 320 \text{ N, } B_z = 0, \ B_y = 280 \text{ N, } B_z = 0, \ A_y = 50 \text{ N} \]

Note that while stable for the given load, there is no support against twisting about the \(y \) axis so this is improperly constrained.
5.69 Compute the reactions at the ball and socket support at point D and the tensions in the support ropes (T_1 and T_2) for the sign support system. The weight of the sign exerts a force of 300 N in the down direction ($-y$) at point E, 0.25 m from D and at point F, 1.75 m from D. Note that DC is not constrained from rotation about its axis.

![FIGURE P5.69](image)

Solution: A free body diagram of the sign support is given in the figure.

![FIGURE S5.69](image)

First note that all the forces intersect a common axis (that of the (continued)
line DC), thus there will be only 5 independent equations and only 5 variables can be determined (D_x, D_y, D_z, T_1 and T_2). The vectors T_1 and T_2 must first be written in terms of unit vectors along CB and CA respectively:

\[
T_1 = T_1 \frac{CB}{|CB|} = T_1 (-0.848\hat{i} + 0.424\hat{j} - 0.318\hat{k}),
\]

\[
T_2 = T_2 \frac{CA}{|CA|} = T_2 (-0.848\hat{i} + 0.424\hat{j} + 0.318\hat{k}).
\]

Equilibrium in the coordinate directions becomes

\[\sum F_x = 0 : \quad D_x - 0.848T_1 - 0.848T_2 = 0 \quad (1)\]

\[\sum F_y = 0 : \quad D_y + 0.424T_1 + 0.424T_2 = 600 \quad (2)\]

\[\sum F_z = 0 : \quad D_z - 0.318T_1 + 0.318T_2 = 0 \quad (3)\]

The moments about point C yield

\[(-0.25\hat{i} \times (-300\hat{j}) + (-1.75\hat{i}) \times (-300\hat{j}) + (-2\hat{i}) \times (D_x\hat{i} + D_y\hat{j} + D_z\hat{k}) = 0\]

or by component

\[\hat{i} : \quad 0 = 0 \quad (4)\]

\[\hat{j} : \quad 2D_z = 0 \quad (5)\]

\[\hat{k} : \quad D_y = 300 \quad (6)\]

Solving equations 1, 2, 3 with

\[D_z = 0 \text{ and } D_y = 300 \text{ N}\]

yields

\[D_x = 600 \text{ N} \quad T_1 = 354 \text{ N} \quad T_2 = 354 \text{ N}\]
5.71 The total force acting on a telephone pole due to the wires attached to it is computed to be \(\mathbf{F} = 100\mathbf{i} - 50\mathbf{j} + 10\mathbf{k} \text{N} \). Compute the reaction at the fixed connection at point \(A \).

Solution: The free body diagram is given in the figure. The equations of equilibrium become simply

\[
\begin{align*}
F &= 100\mathbf{i} - 50\mathbf{j} + 10\mathbf{k} \\
&\text{(continued)}
\end{align*}
\]
\[\sum F_x = 0 : A_x + 100 = 0 \text{ or } A_x = -100 \text{ N} \]
\[\sum F_y = 0 : A_y - 50 = 0 \text{ or } A_y = 50 \text{ N} \]
\[\sum F_z = 0 : A_z + 10 = 0 \text{ or } A_z = -10 \text{ N} \]
\[\sum M_B = 0 : M_x \hat{i} + M_y \hat{j} + M_z \hat{k} + (3 \hat{j} - \hat{k})m \times (100 \hat{i} - 50 \hat{j} + 10 \hat{k})N = 0 \]
\[= (M_x + 30 - 50) \hat{i} + (M_y - 100) \hat{j} + (M_z - 300) \hat{k} = 0 \]

or
\[M_x = 20 \text{ N} \cdot \text{m}, \quad M_y = 100 \text{ N} \cdot \text{m}, \quad M_z = 300 \text{ N} \cdot \text{m} \]
5.73 A folding platform is used to hold parts as well as conserve floor space when not in use. The platform is supported by a hinge at C which is assumed to support negligible moments, a leg, at B modeled as a frictionless support and a removable pin at A modeled as a thrustless bearing again with negligible moments. If the platform is loaded as illustrated compute the reaction forces at A, B and C. Ignore the thickness of the platform.

FIGURE P5.73

Solution: The free body diagram is given in figure S5.73.

The equations of equilibrium become: (continued)
Force Summation:
\[\sum F_x = 0 : C_x = 0 \] \hfill (1)
\[\sum F_y = 0 : A_y + C_y + B_y = 3000 \] \hfill (2)
\[\sum F_z = 0 : A_z + C_z = 0 \] \hfill (3)

The moment equation is
\[\sum M_0 = (0.5\hat{i} + 0.4\hat{k}) \times (-3000\hat{j}) + (0.5\hat{i}) \times (C_z\hat{i} + C_y\hat{j} + C_z\hat{k}) + (\hat{i} + 1.2\hat{k}) \times B_y\hat{j} \]
\[+ 1.2\hat{k} \times (A_y\hat{j} + A_z\hat{k}) = 0 \]

Which yields the 3 component equations
\[\hat{i} : 1200 - 1.2B_y - 1.2A_y = 0 \] \hfill (4)
\[\hat{j} : -0.5C_z = 0 \] \hfill (5)
\[\hat{k} : -1500 + 0.5C_y + B_y = 0 \] \hfill (6)

Equations (1), (3) and (5) yield
\[C_x = A_x = C_z = 0 \]
by inspection. The remaining 3 equations (2, 4, 6) (solved in Mathcad) yield
\[A_y = 500 \text{ N}, \]
\[B_y = 500 \text{ N} \]
and
\[C_y = 2000 \text{ N} \]