

Utilizing GPS Information from the GlobalSat BU-353S4

on a UNIX system

Cody Wilson

4/1/15

Abstract

The BU-353S4 is a USB GPS receiver. The receiver outputs using the NMEA format.

Using a UNIX system, the output of this receiver can be read and formatted, using a

python script, for use in applications such as mapping, tracking, turn by turn directions,

etc.

Keywords

GPS, UNIX, terminal, NMEA

Introduction

GPS (Global Positioning System) is a satellite navigation system that, with an

unobstructed line of sight to four or more GPS satellites, can accurately provide location

and time information anywhere on earth. GPS satellites were first launched in 1978 for

military use, but was not fully available to the public until the year 2000. Civilian GPS

receivers provide, on average, 7.8m of accuracy.

The BU-353S4 (herein referred to as the receiver) is a GPS receiver made by

GlobalSat. The receiver is USB powered and outputs the GPS data in the standardized

NMEA (National Marine Electronics Association) formats: GGA, GSA, GSV, and RMC.

This document walks you through connecting the receiver to a UNIX system and

properly reading the information output by the receiver so that it can be formatted for

further use.

Hardware/software

A UNIX based system with a USB port and an internet connection are required to

complete the actions in this document. The Linux based Ubuntu is the operation system

that is used throughout this document, however; the steps will be the same for most

other UNIX based systems. You will need python and a text editing program to write the

python programs. This document uses python 2.7 and VIM respectively.

Connecting the Receiver

In order to access the receiver once it is connected to the system, we need to know the

device file that is created when connected. UNIX systems create device files for each

device connected to the system. Before plugging the receiver into the system, open a

file browser and enter the /dev/ folder as can be seen in Figure 1.

Figure 1

Once in the folder plug the device into one of the USB ports on your system. A new

device file should appear, take note of its name. The device file should be named

“ttyUSB0” or something similar as can be seen in Figure 2.

Figure 2

Reading the Output

The receiver is a serial character device, meaning information is sent out character by

character with a start and stop character to signify the beginning and end of a line

respectively. To begin reading data from the receiver you will need root access to the

system. Root access gives you full control over the system. If the account you are

currently logged into has root permissions you can skip ahead to the next step.

Otherwise, open a terminal window and type “su root”, then hit enter. Now enter your

root password, as seen in Figure 3. The “su” command stands for switch user.

Figure 3

Now that you have root permissions, enter the command:

“stty -F /dev/ttyUSB0 ispeed 4800”

If your device was named something other than “ttyUSB0”, use that name in the above

command. This command sets the access rate of the USB port on the system to match

the transfer rate of the receiver at 4800.

Next, to see what the receiver is outputting, enter the command:

“cat < /dev/ttyUSB0”

Replacing ttyUSB0 with your device name should it be different. Now what you are

seeing in the terminal is the output stream of the receiver. To stop the output, press

“ctl+C” on your keyboard. This terminated the process. Your terminal should look similar

to Figure 4.

Figure 4

Notice the first line contains an odd character at the beginning. This is because the

system started reading mid data stream and the incoming bits were not aligned to

properly. When the end of line character is read the system properly aligns and begins

outputting readable data.

Notice the variations of the lines. These are the different formats the receiver outputs. It

cycles through them continuously. We are going to focus on the lines that begin with

GPGGA, as this line contains the information we need.

Extracting the Location Data

As can be seen each line begins with the name of the standard (GPGGA) followed by

the location data separated by commas. The GGA information can be seen below in

Figure 5.

Figure 5

The information we need are the longitude and latitude. This information can be read,

parsed and formatted by a python script to be use in further applications.

To run a python script you will need to have python on your system. Python 2.7 is used

in this document. If you do not have python open a terminal window and enter:

“apt-get install python2.7”

Follow the instructions and wait for python to finish downloading and installing.

You will also need a text editing program to write the python file. This document uses

VIM, if you would like to use VIM and do not have it, open a terminal window and enter:

“apt-get install vim”

Follow the instructions and wait for VIM to download and install.

To begin writing the python file open a terminal and enter:

“VIM gps.py”

This will create and open a new file called “gps.py” and this will be where code will be

written. The first line of the code should be “import serial”. “serial” is a python package

for reading serial ports, adding this line allows that package to be used. The next line of

code will be

“ser = serial.Serial(‘/dev/ttyUSB0’ , 4800, timeout = 5)”

This line creates a serial variable called “ser” and sets the port it will read from and the

read speed of that port. The timeout of 5 seconds prevents the program from getting

stuck in an infinite loop trying to read the port.

Next we will create a while loop. Within the while loop we will add two lines:

“line = ser.readline()”

 “splitline = line.split(‘,’)”

What this will do is read the receiver output in a loop and split the output by the commas

separating the data.

Then after the last line and still in the while loop, add the line:

“if splitline[0] == ‘$GPGGA’:”

This if statement will check to see if the line begins with $GPGGA, which is the line that

contains the useful information. If so, the information in that line can be formatted in a

useful way. The whole of the code can be seen in Figure 6.

Figure 6

Within the If statement is where the useful information can be extracted and formatted.

As an example a few lines were added to the code above which parse the line and save

key information to variables such as longitude, latitude, and the directional information.

Then the program prints the line and breaks the loop to stop running.

To run this code, make sure it is saved and your GPS is plugged in to your system.

Then in a terminal window enter the directory that your file is contained in and enter the

command:

 “python gps.py”

This code will run and it will print out the line starting with $GPGGA. The output of the

program can be seen in Figure 7.

Figure 7

The program can be manipulated to suit almost any need. Whether it be mapping,

tracking or anything else you need GPS coordinates for.

Further Reading

"What Is a GPS? How Does It Work?" What Is GPS? Everyday Mysteries. Web. 2 Apr.

2015. <http://www.loc.gov/rr/scitech/mysteries/global.html>.

"GPS Accuracy." GPS.gov:. Web. 2 Apr. 2015.

<http://www.gps.gov/systems/gps/performance/accuracy/>.

"NMEA Data." NMEA Data. Web. 2 Apr. 2015.

<http://www.gpsinformation.org/dale/nmea.htm#GGA>.

"BU-353-S4." USGlobalsat Corporate. Web. 2 Apr. 2015. <http://usglobalsat.com/p-688-

bu-353-s4.aspx#images/product/large/688.jpg>.

http://www.loc.gov/rr/scitech/mysteries/global.html
http://www.gps.gov/systems/gps/performance/accuracy/
http://www.gpsinformation.org/dale/nmea.htm#GGA
http://usglobalsat.com/p-688-bu-353-s4.aspx#images/product/large/688.jpg
http://usglobalsat.com/p-688-bu-353-s4.aspx#images/product/large/688.jpg

