
1 | P a g e

Using Microsoft Visual Studio to Create a
Graphical User Interface

ECE 480: Design Team 11

Application Note

Joshua Folks

April 3, 2015

Abstract:

Software Application programming involves the concept of human-computer interaction and in

this area of the program, a graphical user interface is very important. Visual widgets such as

checkboxes and buttons are used to manipulate information to simulate interactions with the

program. A well-designed GUI gives a flexible structure where the interface is independent

from, but directly connected to the application functionality. This quality is directly

proportional to the user friendliness of the application. This note will briefly explain how to

properly create a Graphical User Interface (GUI) while ensuring that the user friendliness and

the functionality of the application are maintained at a high standard.

2 | P a g e

Table of Contents

Abstract…………..……1

Introduction….………3

Operation….………………………………………………….……………………………………………………………………………3

Operation….………………………………………………….……………………………………………………………………………3

Visual Studio Methods.…..…………………………….……………………………………………………………………………4

Interface Types………….…..…………………………….……………………………………………………………………………6

Understanding Variables..…………………………….……………………………………………………………………………7

Final Forms…………………....…………………………….……………………………………………………………………………7

Conclusion.…………………....…………………………….……………………………………………………………………………8

3 | P a g e

Key Words: Interface, GUI, IDE

Introduction:

Establishing a connection between the user interface and the application functionality has been
simply implemented since the late 1970’s. Xerox PARC has been a major contributor to user
interfaces including the first ever, Alto, where most general purpose GUI’s are derived from.
The 1980’s were revolutionary for GUI’s across all platforms. The Xerox Star and the Apple Lisa
both introduced major functionality from the menu bar, window controls, double-clickable
icons, to dialog boxes, and monochrome displays. The evolution and popularity of the user
interface continued to grow beyond initial thoughts. This increase of its use made it impossible
to create a standard look for GUI’s. The wide range of operating systems with very distinct
GUI’s are among the most popular and most recognizable. Microsoft Windows and Mac OS X
are huge for laptop/desktop computers and Android, Apple iOS, and Windows Phone are the
notable GUI’s for handheld devices. The creation of a user-friendly interface does not involve a
complex series of operations in today’s age. Different programs such as Microsoft Visual Studio
make it very simple to get a GUI with high application functionality and are very attractive to
users across the board.

Objective:

This note will discuss the methods and different types of interfaces that Microsoft Visual Studio
provides in the IDE. Visual Studio is able to pre generate code to better understand how the
user interface is connected to the functionality of the program. The same functionality can be
achieved by different complex methods and many simple methods that are available. Linking
menu bars or tools that are thoroughly placed on the form to the code is very important to a
successful GUI.

Figure 1: General Pictures showing Visual Studio's IDE

4 | P a g e

A large part of working with the user interface involves understanding the code that joins
everything together. Since Visual Studio pre generates this code, they give an upper edge on
the amount of practices to put in the application by adding simplicity. After all of the design
and functionality is completed, the .exe file will be automatically generated to run the program
inside and outside of Visual Studio. This note will give examples of final forms and give a more
clear view of what is possible with Visual Studio.

Operation:

Microsoft Visual Studio has an advanced variety of tools to create a high level performance
GUI’s. This integrated development environment (IDE) is compatible with many different
languages, but remains simple to maintain the functionality of the application. Visual Studio
has a large assortment of options to create a GUI. As shown in Figure 1, depending on the
language that was chosen, there are lists of different projects that can be selected such as a
MFC Application, Windows Console Application, and Windows Forms Application. Each one of
these different types of applications can be used for a common interface. Still they each have
their own special attributes, whether they differ from the code that they generate or the type
of methods they used to create the actual form.

Figure 2: New Project showing various Windows Applications

The Windows Forms Application is selected as the base for this note. The empty form for the
Windows Application will appear and this will serve as a foundation for the GUI as seen in
Figure 2. All types of GUI’s consist of basic tools including: buttons, text boxes, labels, check
boxes, etc. The more intuitive controls that the GUI handles care able to correlate with the
functionality of the application. However, more controls can decrease the level of user
friendliness of the actual GUI.

5 | P a g e

Figure 3: Initial Form that is generated as well as the common tool for GUI's

Visual Studio Methods:

A key feature that Visual Studio implements in their IDE is the drag/drop method. This method
allows the user to pick and choose any tool desired to be a part of the final GUI and drag and
drop the tool on to the windows form. With this method the code that runs in parallel with the
tools is pre-generated. This takes away the complex and time-consuming task of matching code
with each tool. Since there can be a vast number of different and similar controls on the GUI,
there is a simple naming convention that is used when using Visual Studio. Each tool placed on
the form has a preference window that deciphers what the tool is named, what happens when
that tool is clicked, and many other layout settings. This allows the user to organize the GUI
more effectively than having tools on the GUI that one cannot decode the uses of in the code.
The code behind the GUI is very important since it tells the application the functionality of the
program. As previously stated, the code is pre generated in a format that is understandable to
even the novice programmer. Double clicking on any tool on the GUI will result in generated
code that will trigger a function. Figure 3 shows the function that is produced with the
parameters.

Figure 4: Generated Function that correlates to tool on GUI

This section of the code handles an important piece of the interface; it directly connects the
user interface to the functionality of the program. This function handles what happens when
something on the form is clicked. In this specific case, Figure 3 shows the function that will be
referenced once the first button is clicked. All further actions the user wants to implements
after the button is clicked will be placed within? this function. There are no limits placed on the
process the form should enter once a tool is clicked. Visual Studio supports the ability to create

6 | P a g e

different dialog boxes from a form or a different dialog box, the ability to make calculations,
and creating different forms all while maintaining the true performance of the GUI.

Figure 5: Type of Interface Supported by Visual Studio

Interface Types:

Creativity is highly supported within Visual Studio. When making an intricate GUI, simplicity is a
key concept when considering the design. Rather then having multiple buttons and methods
directly on the form within the GUI, it is better to design a menu bar to have multiple options
and less clutter. Figure 4 shows how this can be implemented. With each menu item there is a
menu option that goes into the dropdown tab. These menu options are clickable in the
interface and they each have an ID tied to them. In order to gain the interactive part with the
options an event handler can be paired with a certain class. This handler will then be
referenced to whenever it is clicked in the running of the program. This type of interface is
widely used in the world of GUI’s.

Understanding Variables:

Visual Studio is a remarkable IDE that not only pre generates the functions that coordinate with
clicking in the interface, but also generates the variables that are needed for the program. The
structure of the program is formatted in a way where referencing variables on the form done
by pointing to the form and gaining access to variables. In order to do this, the user would have
to reference the pointer to the form in the form. This process seems complicated, but it is
simply done by using this followed by a -> sign. This takes the pointer of this that is currently
pointing to the form and then is able to access its items such as objects and variables.
Depending on which variables or objects are accessed there are many ways to actually
reference the text in the text box or if a check box has been checked for example. Figure 5

7 | P a g e

shows how the code references the variables in the form. The layout, naming, location, and
index are all set by this method that Visual Studio implements.

Figure 6: Displaying variables reference in code from the form

Final Forms:

A user interface is required to have a purpose beyond the attractive graphics. Being able to add
text boxes that react upon different booleans of checked boxes will ensure the right steps that
the user needs to know for interactivity. Figure 6 shows a few different final forms of GUI’s that
have been created by Visual Studio.

8 | P a g e

Figure 7: Different GUI's that are created used Visual Studio

The logic behind the entire interface goes hand and hand with what appears on the interface.
However, there will be different if and while statements that can be used to improve the overall
performance. For example there could be multiple if statements that would disable text boxes
depending on radio buttons or while loops that could continue provided the amount of time
per loop from the user. If your application involves drop down menus, they can be directly
correlated to the code and improve the user friendliness by minimizing how many actions the
user has to make in order to increase the ease of use. The application functionality dictates the
user interface and once that is decided then the interactivity should be simplified.

Conclusion:

Microsoft Visual Studio has simple, yet complex methods that are used to create a graphical
user interface that has its ease of use range from easy to hard. With the pre-generated code,
variables from the form, and different methods to have a less cluttered interfaces, the user can
achieve a great amount of application functionality. The final form of the application must
include user friendliness and the purpose of the program proportionally. Design Team 11 has
decided to use Microsoft Visual Studio to program the GUI that interacts with ReplicatorG. This
program will serve as an editor that will change the Gcode produced by ReplicatorG, to update

9 | P a g e

it with the current settings. User interfaces are a key attribute when producing applications
that serves a purpose to the user with the ease to understand the function and application.

10 | P a g e

References:
 http://apievangelist.com/2014/08/19/bing-developer-assistant-for-visual-studio-

delivers-relevant-api-code/

 http://toastytech.com/guis/guitimeline.html

 http://holowczak.com/getting-started-with-windows-forms-using-visual-c-tutorial/4/

 http://stackoverflow.com/questions/9213839/visual-studio-c-sharp-windows-forms-
changing-button-color

 http://www.codeproject.com/Articles/17371/Passing-Data-between-Windows-Forms

 http://dev.mysql.com/doc/connector-net/en/connector-net-visual-studio-forms-
project-wizard-usage.html

http://apievangelist.com/2014/08/19/bing-developer-assistant-for-visual-studio-delivers-relevant-api-code/
http://apievangelist.com/2014/08/19/bing-developer-assistant-for-visual-studio-delivers-relevant-api-code/
http://toastytech.com/guis/guitimeline.html
http://holowczak.com/getting-started-with-windows-forms-using-visual-c-tutorial/4/
http://stackoverflow.com/questions/9213839/visual-studio-c-sharp-windows-forms-changing-button-color
http://stackoverflow.com/questions/9213839/visual-studio-c-sharp-windows-forms-changing-button-color
http://www.codeproject.com/Articles/17371/Passing-Data-between-Windows-Forms
http://dev.mysql.com/doc/connector-net/en/connector-net-visual-studio-forms-project-wizard-usage.html
http://dev.mysql.com/doc/connector-net/en/connector-net-visual-studio-forms-project-wizard-usage.html

