CURRENT SENSING USING RESISTIVE SHUNTS

ECE 480 Design Team 5 Joshua Myers Ryan Laderach Stephen England Kenji Aono 4/1/2011

OUTLINE

- What is current sensing?
- Common Methods of Current Sensing
- High/Low Side Resistive Sensing
- Challenges of Resistive Sensing

CURRENT SENSING

- A method of determining the current drawn to a load
- Not necessarily measuring current
 - Voltage
 - Magnetic Field
- Large range of measurements
 - µA to kA
 - Requires different techniques depending on what level of current is being drawn

USES OF CURRENT SENSING

- Over-current Protection
 - Prevents equipment failure
 - Helps ensure safety
- Performance Monitoring
 - Improves throughput
 - Reduces waste
- Power Consumption
 - Monitoring of current draw can help improve efficiency
 - Can be useful in trend analysis of a system

HALL EFFECT CURRENT SENSING

A flux field is generated, the toroid senses the field, special IC measures and amplifies

induced voltage

- Advantages:
 - Handles high currents
 - No insertion loss
- Disadvantages:
 - Large Size
 - Expensive

http://www.allegromicro.com/en/Products/Design/unipolar/images/fig2.jpg

CURRENT TRANSFORMER SENSING

- Uses transformer to read current in one winding induced by the other
- Advantages:
 - No offset voltage
 - No external power required
- Disadvantages:
 - Large Size
 - Expensive
 - Requires AC

http://www2.electronicproducts.com/images2/F64 DATAD0506.gif

RESISTIVE SHUNT CURRENT SENSING

- Ohm's Law used to create voltage drop
- Voltage drop is measured by an IC
- IC amplifies voltage drop
- Can use high or low side
- Advantages:
 - Speed
 - Size
 - Accuracy
- Disadvantages:
 - Insertion loss
 - Low current

HIGH SIDE MEASUREMENTS

- Places shunt resistor between the power source and the load
- Advantages:
 - Can trigger necessary action before current flows through the load
 - Does not add any disturbance to ground
- Disadvantages:
 - Requires very careful resistor matching to ensure the differential amplifiers have a precise measurement

http://focus.ti.com/en/graphics/aap/general/figure4.gif

HIGH SIDE MEASUREMENT

TI INA138

http://focus.ti.com/en/graphics/aap/general/figure6.gif

LOW SIDE MEASUREMENTS

http://focus.ti.com/en/graphics/aap/general/figure2.gif

- Places shunt resistor from the load to ground.
- Advantages
 - Simple and low cost
 - Most accurate current sensing method
- Disadvantages
 - Adds unnecessary resistance in the ground path
 - Circuit faults may occur before being noticed by the sensing instrument
 - Current sent to an antenna in the load may not be measured

LOW SIDE MEASUREMENT

http://focus.ti.com/en/graphics/aap/general/figure3.gif

RESISTIVE SHUNT

SENSING

- Low resistance
- Offset voltage
- Noise
- Finite gain

CHALLENGE: LOW RESISTANCE

- Minimize impact
 - Maintain original signal to load
 - Typically 10 100m Ω
 - Keep voltage drop within IC rails
 - Resistor value depends on expected current
 - Choose smaller for portable devices, higher for accuracy
- Parasitics
 - PCB traces
 - Solder joints
 - Wires
 - Tolerance

CHALLENGE: OFFSET VOLTAGE

- All amplifiers have an offset
 - Input same voltage in positive and negative terminals
 - Output is ideally zero
 - In practice, it is non-zero
 - Typical op-amp can be 10 mV, even precision can have 30 µV
- Small offsets can lead to large errors
- Voltages can also drift
 - Aging of device
 - Temperature

CHALLENGE: NOISE

- Voltage drop is a differential signal
 - ICs require a high common mode rejection ratio
 - Placement in devices may lead to noise coupling on a single input
- Thermal noise requires consideration
- High currents may create undesirable magnetic fields
- High frequency signals on the line can cause problems

CHALLENGE: FINITE GAIN

- Consider a $1m\Omega$ resistor with 1 mA of current; this is a 1 uV drop
 - Typical precision chips may only have a gain of 500
 - 500 uV is still a very small signal
 - This may present problems in converting to a digital signal
- As an analog signal, it is not robust
- Using an ideal op-amp would fix this problem
 - Operational Amplifier
 - Shunt Monitor
 - Instrumentation Amplifier
 - Chopper Amplifier

CONCLUSION

- Current sensing basics and methods
- Resistive shunt monitoring
 - High side
 - Low side
- Design considerations

QUESTIONS

