Team 5

Small, Lightweight Speed and Distance Sensor for Skiers & Snowboarders

Temika Cage
Presentation Coordinator

Tim Ross
Document Coordinator

Ben Guild
Laboratory Coordinator

Kunal Verma
Manager

Justin Erskine
Webmaster

Dr. Shanker Balasubramaniam
Facilitator

Contact: Dr. Stephen W. Schneider
Introduction
Project Goals

Create a device with the following features:

- Speed, Distance, and Time Recording
- User-Friendly
- Safe/Robust Design
- Inexpensive
- Long Battery Life
- Easy Data Retrieval
- Preferred: Doppler Radar
Doppler Radar

- Signal is sent out at a fixed frequency
- Received signal has a shifted frequency from the reflection
- Calculate speed using frequency deviation

\[f = \left(1 - \frac{v_s}{c}\right)f_0 \quad \Delta f = -\frac{v_s - v_r}{c}f_0 \quad v_s = 0 \]

\[v_r = c \cdot \frac{\Delta f}{f_0} \]
Design Specifications

Our design has several requirements that must be met:

- **Measurements** (minimum one minute intervals)
 - Average speed
 - Max Speed
 - Distance Travelled

- **Safety**
 - Lightweight (< 2 lbs.)
 - Disabled display during recording
 - Weather resistance
 - Low temperature operation (-10F)

- **Power and Efficiency**
 - Auto-off after 10 minutes of operation
 - At least 2 hours of battery life

- **Operation**
 - Data storage requirement for at least 10 minutes of run data
 - Data report on LCD or data export to external device
Final Design

- **Radar Device**
 - Sends and receives EM waves off the ground
 - Produces output voltage dependent upon frequency shift in the returning wave
 - Prefabricated Doppler radar module (easy to replace)

- **Control System**
 - Microprocessor (PIC) based implementation
 - Handles interaction with the user interface
 - Performs calculations and storage of data from radar device

- **User Interface**
 - Will consist of an LCD display and controls
 - Layout will allow for easy manipulation of controls and high visibility
Final Prototype
Achieved Design Specs

- **Measurements** *(minimum one minute intervals)*
 - Average speed
 - Max Speed
 - Distance Travelled

- **Safety**
 - Lightweight *(< 2 lbs.)*
 - Disabled display during recording

- **Power and Efficiency**
 - At least 2 hours of battery life

- **Operation**
 - Data storage requirement for at least 10 minutes of run data
 - Data report on LCD or data export to external device
Unachieved Design Specs

- Auto LCD Shutoff
- Weather-resistant
 - Temperature - Untested
How It Works
Doppler signal processing procedure:
Signal amplification of the Doppler signal.
Doppler signal processing procedure:
Zero-crossing detection of the amplified signal.
How It Works

Doppler signal processing procedure:
Charge-pump to provide a linear relationship between input frequency and output voltage.
How It Works
Doppler signal processing procedure:
Analog to Digital Conversion of the scaled voltage.

```c
ConvertADC(); //perform ADC conversion
while(BusyADC()); //wait for result
Speed = ReadADC();

AVG = ((unsigned float) Speed / 1024.0) * 4.97 * (1.5863 * ((unsigned float) Speed / 1024.0) * 4.97) + 8.3087;
```
How It Works

Doppler signal processing procedure:
Speed calculation in software.

```
DISTANCE = AVG * TIME * (5280.0/18000.0);

Distance_Int = DISTANCE;
Max_Int = MAX;
Avg_Int = AVG;
Mins = TOTAL_TIME/60;
Secs = (TOTAL_TIME) % 60;
```
How It Works

Simple Menu System

- Start Run
- Recorded Runs
- Delete Runs
- Settings

Start Run

- Shuts off LCD and waits for user to being moving
- Records Run Speeds throughout run
- At end of Run, stores Run data
How It Works

- Recorded Runs
 - Access old runs
 - Stores up to 20 runs

- Additional features
 - LCD Screen shuts down on user movement
 - Adjustable Contrast on LCD Screen
Final Cost Breakdown

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
<th>Our Costs</th>
<th>Production Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC</td>
<td>$6.32</td>
<td>$0.00</td>
<td>$3.95</td>
</tr>
<tr>
<td>Battery</td>
<td>$10.88</td>
<td>$10.88</td>
<td>$7.61</td>
</tr>
<tr>
<td>Switch</td>
<td>$1.17</td>
<td>$1.17</td>
<td>$1.17</td>
</tr>
<tr>
<td>Large Project Box</td>
<td>$3.69</td>
<td>$3.69</td>
<td>$3.69</td>
</tr>
<tr>
<td>Small Project Box</td>
<td>$2.29</td>
<td>$2.29</td>
<td>$2.29</td>
</tr>
<tr>
<td>Printed Circuit Boards</td>
<td>$3.98</td>
<td>$3.98</td>
<td>$3.98</td>
</tr>
<tr>
<td>LCD</td>
<td>$33.00</td>
<td>$0.00</td>
<td>$25.00</td>
</tr>
<tr>
<td>Doppler Module</td>
<td>$15.00</td>
<td>$15.00</td>
<td>$15.00</td>
</tr>
<tr>
<td>LM324N</td>
<td>$0.46</td>
<td>$0.00</td>
<td>$0.29</td>
</tr>
<tr>
<td>LM2907</td>
<td>$2.02</td>
<td>$2.02</td>
<td>$1.46</td>
</tr>
<tr>
<td>LM7805</td>
<td>$0.60</td>
<td>$0.00</td>
<td>$0.38</td>
</tr>
<tr>
<td>MX045</td>
<td>$3.35</td>
<td>$0.00</td>
<td>$1.91</td>
</tr>
<tr>
<td>Capacitors (x5)</td>
<td>$0.10</td>
<td>$0.00</td>
<td>$0.10</td>
</tr>
<tr>
<td>Inductors (x2)</td>
<td>$1.80</td>
<td>$0.00</td>
<td>$1.80</td>
</tr>
<tr>
<td>Resistors (x14)</td>
<td>$0.98</td>
<td>$0.00</td>
<td>$0.98</td>
</tr>
<tr>
<td>Phono Jack Set (x2)</td>
<td>$0.60</td>
<td>$0.60</td>
<td>$0.60</td>
</tr>
<tr>
<td>Savings</td>
<td></td>
<td></td>
<td>$16.03</td>
</tr>
<tr>
<td>Total</td>
<td>$86.24</td>
<td>$39.63</td>
<td>$70.21</td>
</tr>
</tbody>
</table>
Final Results

• Measured device performance in both a vehicle and on a skateboard.

• Instantaneous speed measurement were calibrated to match real world testing

• Max speed completely matched expected values

• Average speed showed no more than 10% in variation from expected results

• Run time is rounded to 2 second accuracy

• Distance measurements show same accuracy as average measurements.
Future Design Improvements

- External EEPROM
- Longer range detection
- Device Structure
 - Wireless Communication
 - One component
- USB Connection for data export
Avg Spd: 1 mph
Max Spd: 1 mph
Dist: 6 yds
Questions?