
Quality Function Deployment and Selection Matrices

Customer
Driven Product
Development

Illustrated by Examples

Typical
DFSS
Process

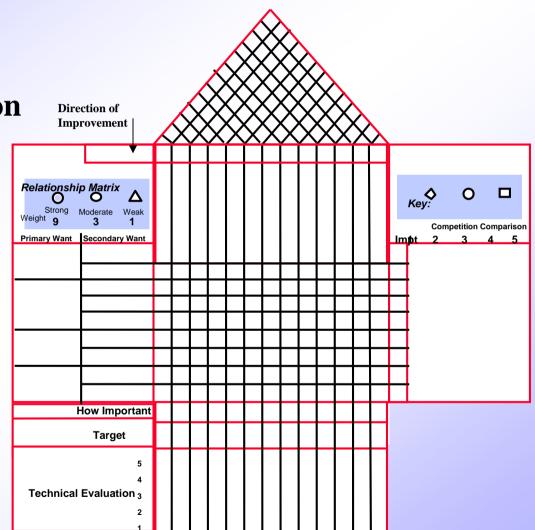
House of Quality & Selection Matrix Discussion Objectives

- **◆** Understand purpose of each "Room" in the Matrix
- **♦** Illustrate 7-step approach to HOQ, via example
- **♦** Identify Critical Customer Requirements (CCRs)
- **♦** Establish System Engineering Design Specifications
- **♦** Explain Solution Selection Matrix

What are Quality Function Deployment and Solution Selection Matrices?

- **◆** Tools to assist in <u>data based</u> decision making
- ♦ System of matrices translating
 Customer Needs into Engineering
 Specifications
- **♦** Tools to reduce design uncertainty
- **♦** Applied to Product, Service, Process, IT, or Software Designs

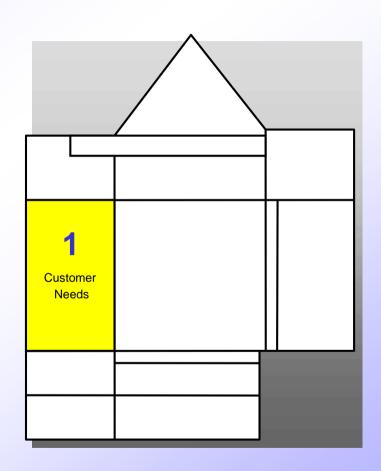
What is a House of Quality?


Graphical representation

of the logic flow . . .

Customer Needs

Engineering Design Specifications


Customer Needs (Room 1)

Objective:

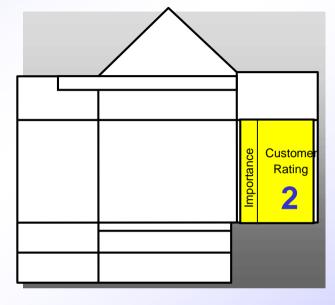
Orderly summation of Customer's Needs . . .

from Voice of Customer . . .

Collected early in the Identify Phase of DFSS

Example: Bank Loan Customer Needs

Primary	Secondary				
Friendly staff	Willing to answer questions				
Thendry Stan	Treat me nicely				
Knowledgeable staff	Knows loan procedure				
	Knows market				
	Understands my situation				
Speed	Money when I need it				
Speed	Application quickly filled out				
Accurate	Don't make mistakes				
	Give me the right rate				



Tip: List of needs should be less than 20

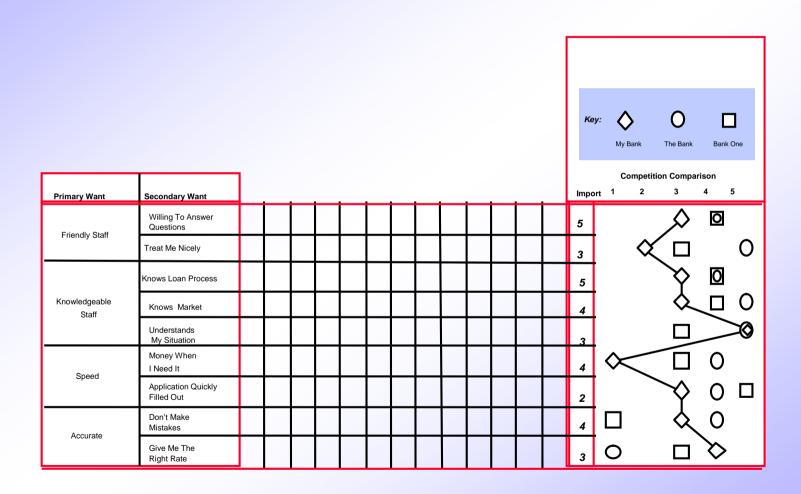
Customer Rating (Room 2)

Objectives:

- 1. Document Customer Needs
 Importance with a 1-5 rating
- 2. Document Perception (opinion) of our offering and competitors' offering

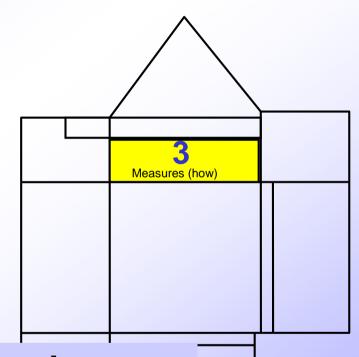
Information comes from Quantitative Voice of Customer

Customer Rating (Room 2)


Document Importance of each Customer Need

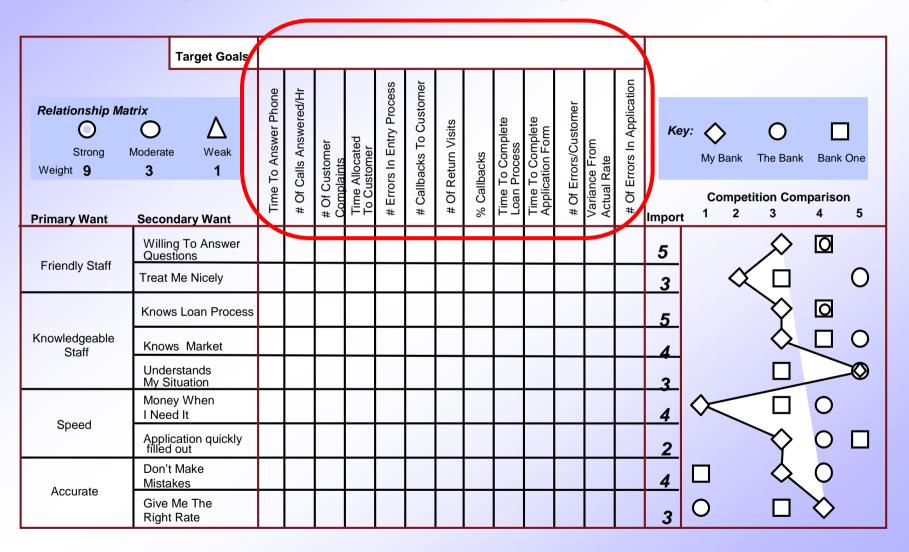
- Rating scale (1 5), with 5 as highest rating
- Frequency of response in Qualitative VOC does not automatically indicate importance

Plot Customer's Perception (opinion) of our performance and that of our competition

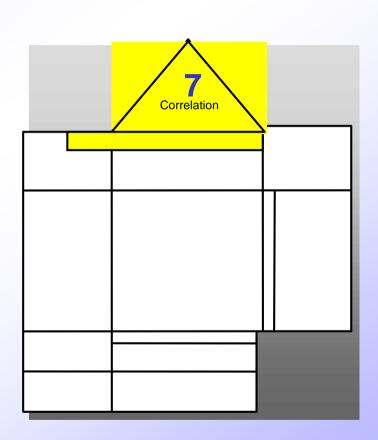

Example: Customer Rating

Design Measures (Room 3)

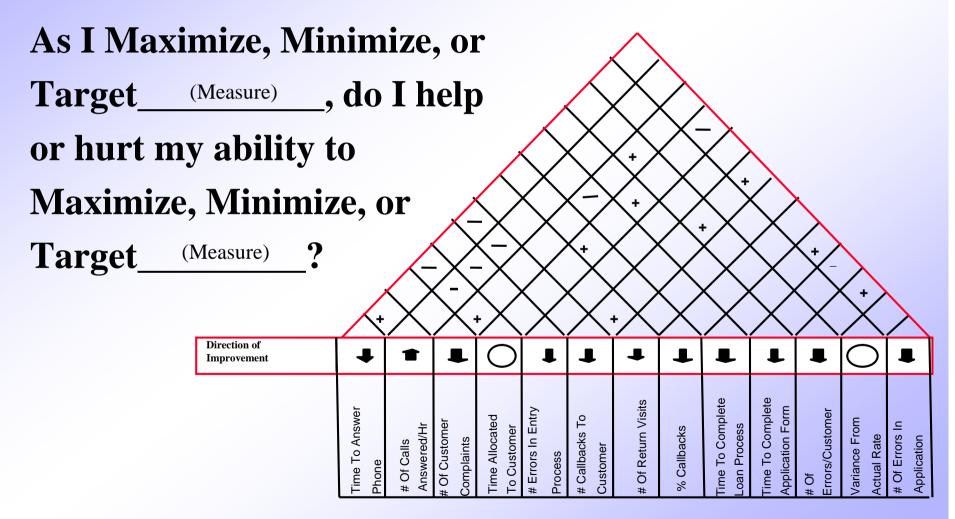
Objectives:


Translate from "Customer Speak" to "Engineering Design Speak"

- Objective Measures that can be conducted during product development
- Ensure Customer Satisfaction

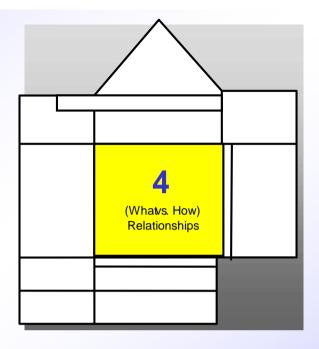

Example: Measures (Room 3)

Measures Correlation (Room 7)


Objectives:

- **◆ Establish direction of improvement for each Design Measure**
 - Maximize 1
 - Minimize
 - Target a Specification
- **♦** Determine which Measures are related, and extent of Relationship
- **◆** Identify Design Conflicts that lead to compromise or Trade-off

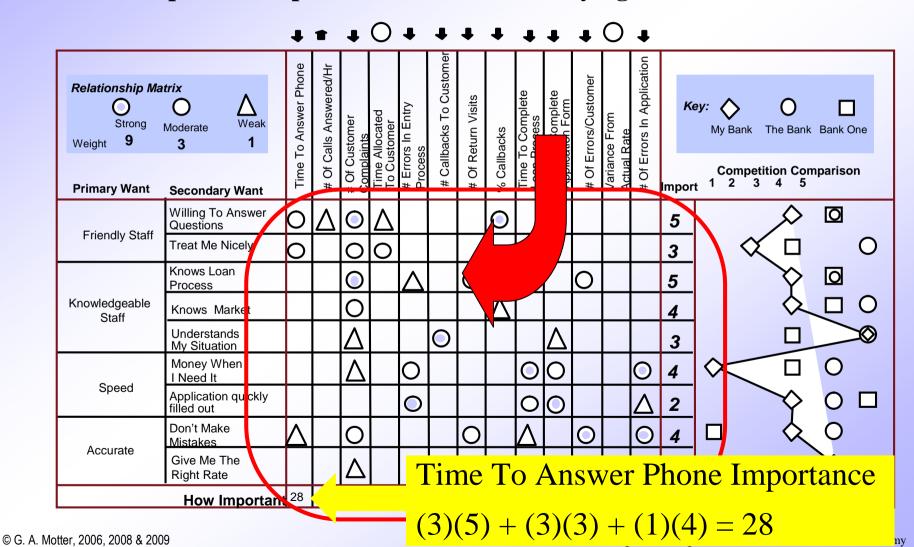
Example: Measures Correlation


Facilitation Question:

Relationships (Room 4)

Objective:

Establish relationships between Design Measures and Customer Needs



Process:

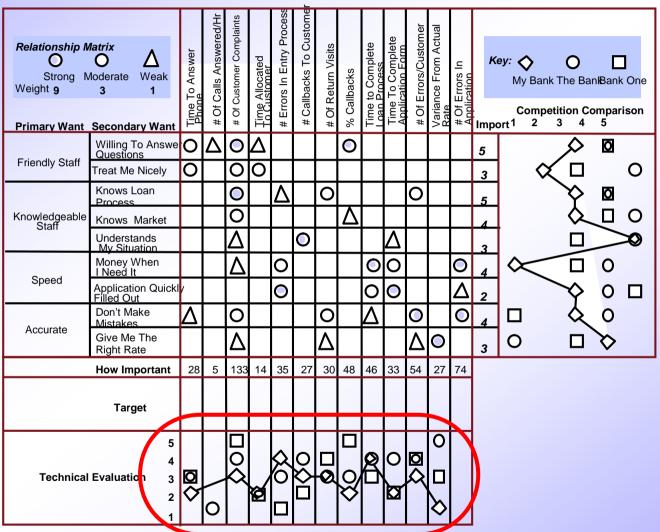
- Use 9 (strong), 3 (moderate) and 1 (weak) . . . rate Relationship between each Measure and Customer Need
- Use Relationship Matrix symbols: ○ △
- Calculate score for each cell by multiplying Importance Rating (Room 2) by Relationship Rating
- Add up individual scores for each Measure to determine the "How Important" value

Example: Relationships (Room 4)

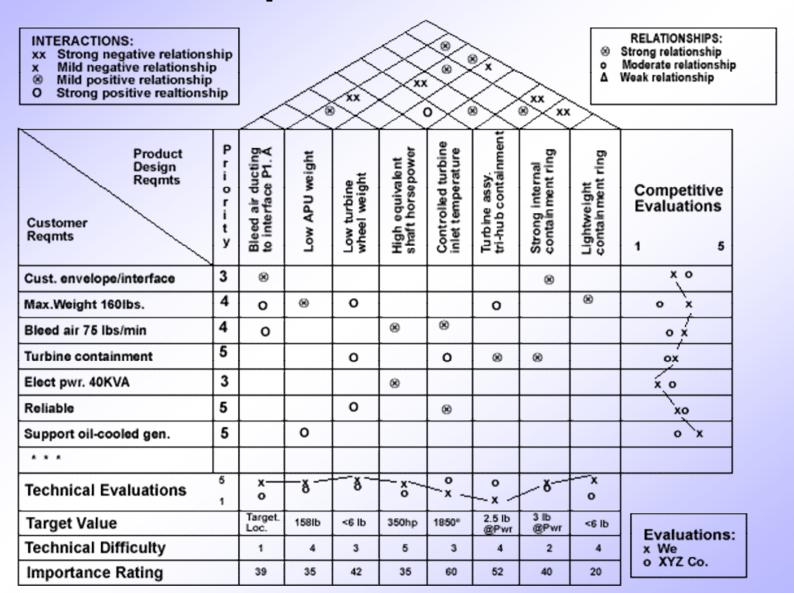
Facilitation Question: As I Maximize, Minimize, or Target (Measure), what direct positive impact does it have on satisfying (Customer Need)?

Technical Evaluation (Room 5)

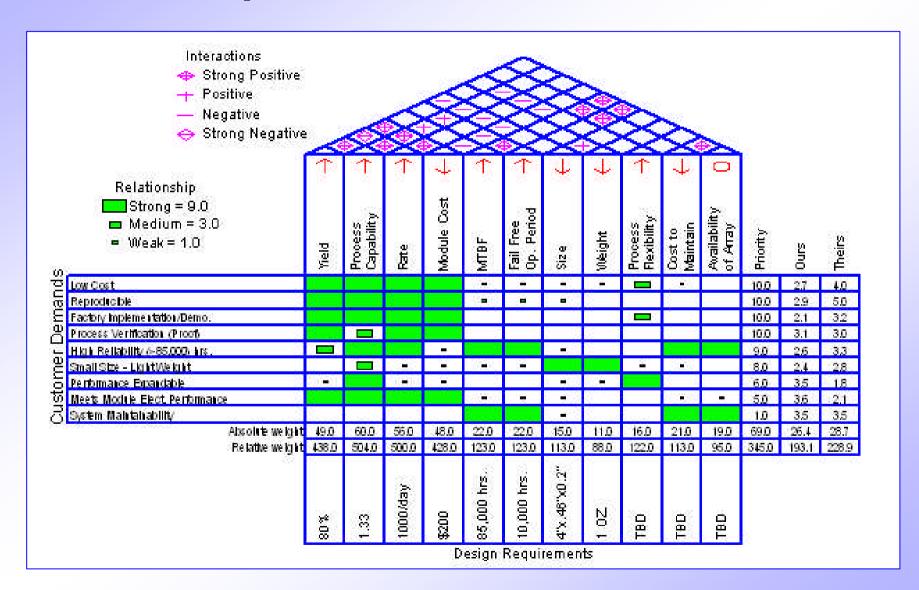
Objective:


Factual picture of how we technically compare to competition:

- Best in class Technology
- Innovative technology



Example: Technical Evaluation (Room 5)

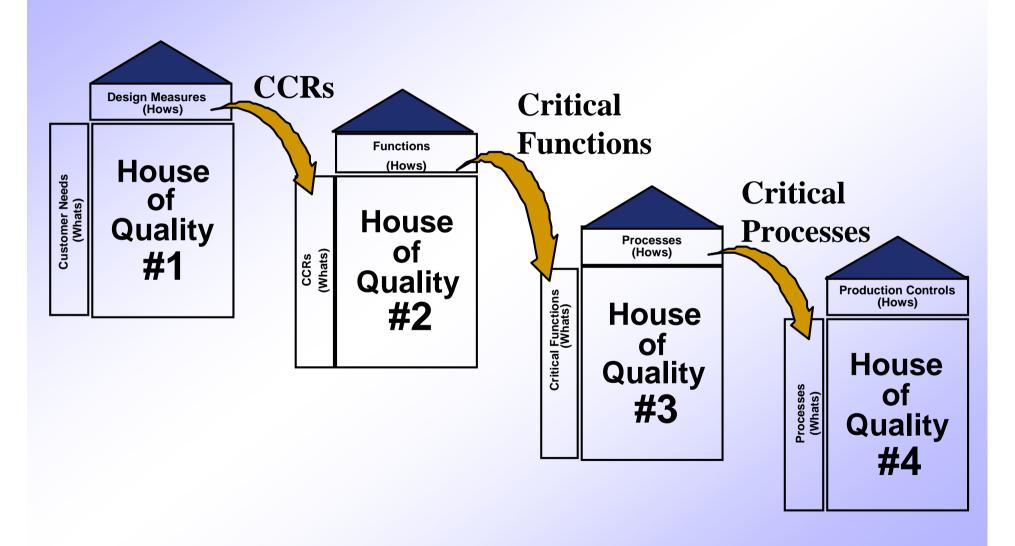


Completed **House of Quality** Example **Target Goals** Relationship Matrix 0 0 Time to Complete Loan Process # Errors In Entry # Callbacks To Moderate # Of Errors/Cu Bank One The Bank # Of Return % Callbacks # Of Custor # Of Calls **Competition Comparison** Secondary Want **Primary Want** 0 0 Willing To Answer Friendly Staff 0 Treat Me Nicely Knows Loan Process Knowledgeable Knows Market Understands My Situation 0 Money When 0 0 I Need It Speed oplication quickly 0 0 filled out Don't Make 0 Mistakes Accurate Give Me The 35 27 30 48 46 33 **How Important** 5 **Technical Evaluation** 3 2

Example – Aircraft APU

Example – Manufactured Module

Establish Design Specifications


★ Establish Targets, Upper Specification Limit (USL), and Lower Specification Limit (LSL) for each Measure in the HOQ

- **♦** Set Target Values to:
 - Ensure Customer Satisfaction
 - Gain Competitive advantage

Be sure to document Design Specs in bottom row of HOQ

Developing Further Houses

Engineering Criteria	Importance	Possible Solutions						
		S ₁	S₂	S ₃	S 4			
Criteria ₁								
Criteria ₂								
Criteria ₃								
Criteria ₄								
Totals								

Engineering Criteria	Importance	Possible Solutions								
		S ₁ S ₂ S ₃ S ₄								
Criteria ₁										
Criteria .										
Criteria e e e e e e e e e e e e e e e e e e e										
Ou!(a u!	Features of finished design that cut across many full lesigns									
or										
Total: Speci	 Specific full designs 									

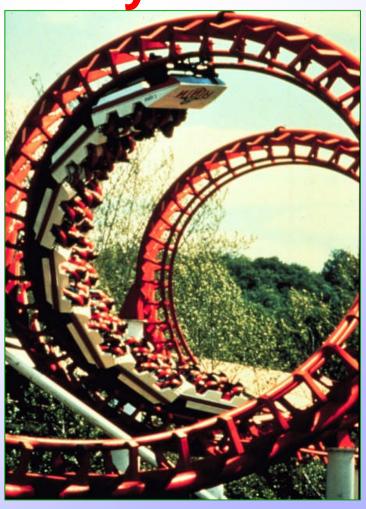
Engineering Criteria	Importance	Possible Solutions								
		S ₁ S ₂ S ₃ S ₄								
Criteria ₁		List 6 – 12 Engineering Criteria								
Criteria ₂		Criteria utilized to select solution								
Criteria ₃	Examples:User friendly									
Criteria ₄		Maturity of technologyPower requirements								
	1	• Space								
Totals		WeightSpeed of response								
G. A. Motter, 2006, 2008 & 2009		 Hardware Platform – microprocessor, PC Software – C, Assembly Language 								

Engineering Criteria	Importance	Possible Solutions								
		S ₁ S ₂ S ₃ S ₄								
Criteria ₁										
Criteria ₂		Ir	<mark>nporta</mark>	nce R	ating o	f each	Criteria			
Criteria ₃		• 1 − 5 scale								
Criteria ₄			I	ı	ı					
Totals										

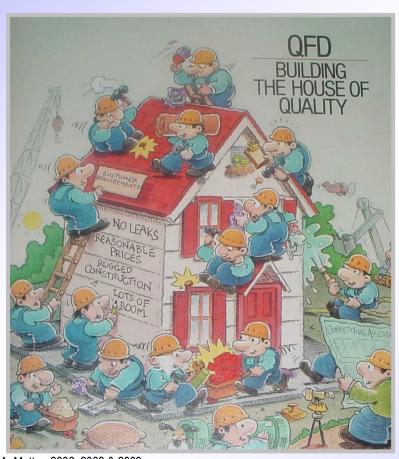
Engineering Criteria	Importance	Possible Solutions							
		S ₁	S₂	S ₃	S ₄				
Criteria ₁									
Criteria ₂									

Specific Cell Rating...

Rate each cell on how well the Possible Solution meets the Design Criteria


Strong = 9 points, Moderate = 3 points, Weak = 1 point

Use symbols for ease of understanding


Engineering Criteria	Importance	Possible Solutions								
		S ₁ S ₂ S ₃ S ₄								
Criteria ₁		1 0 1	1							
Criteria ₂	S_2 Total Calculation = $(S_1)(ImnC_1) + (S_2)(ImnC_1)$									
Criteria ₃	$(S_2)(ImpC_1) + (S_2)(ImpC_2) + \dots (S_2)(ImpC_N)$									
Criteria 4										
Totals										

House of Quality & Selection Matrix Discussion Summary

- **◆ Defined the purpose of each "Room" in the House of Quality (HOQ)**
 - **◆Illustrated, via an example**
- **◆ Provided algorithm to determine Critical**Customer Requirements (CCRs)
- **◆ Illustrated establishment of System Level Engineering Design Specifications**
- **◆ Defined Solution Selection Matrix**
- **◆ Provided Examples**

Questions?

