ECE 480 Six Sigma Overview & Introduction to Design for Six Sigma

Six Sigma Companies

3M	ADT Security	Air Products		
Allied Signal	American Standard	Americhem		
Armstrong	Armstrong World Industries	Asahi Kasai		
Astrazeneca	Atlantic Health	Avery Denison		
Avnet	Bank of America	BASF		
Bayer	BC Hydro	Becton Dickenson		
Black & Decker	Boeing	Bombardier		
Boston Financial Services	Calloway Golf	Caterpiller		
Celanese	City Bank	Chlorox		
Conoco	Corning	Cott Beverages		
Covenant Health	Crompton	Dannon		
Decoma	Degussa	Dell		
Delphi	Deutsche Bank	Dow Chemical		
Dow Corning	DuPont	Eastman Chemical		
Eastman Kodak	Eaton Corp.	Eli Lily		
Emerson	Energizer	Florida Light & Power		
Ford	Fortis Health	General Electric		
General Motors	Georgia Pacific	Gillette		
GlaxoSmithKline	Goodrich Goodyear			
Harley Davidson	HP	Hitachi		

More Six Sigma Companies

Honeywell	IBM	Intel
ITT Industries	ITW	John Deere
Johns Manville Corp.	Johnson & Johnson	Kellogg
Kohler Corp.	LG Chemical	Lockheed Martin
Lord	Lubrizol	Maytag
Mckesson	Moog	Motorola
National Semiconductor	NBC News	NCR Corp.
Noranda	Northrop Grumman	Noveon
Omnova Solutions	Owens Corning	Phillips
Pitney Bowes	PPG Industries	Praxair
Raytheon	Rogers Corp.	Rhom & Haas
Royal Bank of Canada	Saint-Gobain	Samsung
SAS Inst.	Scott Seeds	Seagate Technologies
Sherwin Williams	Siemens	Silicon Graphics
Sony	Sprint	Square D
Sun Chemical	Sunbeam	Swagelok
Timken	Toyota	Trane
Transfreight	TRW	US Filter
Visteon	WR Grace	Xerox

WOWing Customers with Six Sigma Products... via Design for Six Sigma

DFSS Discussion Objectives

- Define Quality, Defect, and Sigma Level
- Describe generic DFSS Process flow
- Highlight the DFSS Process with an example
- Explain "What's different about DFSS" from traditional Engineering Design approach?

Quality and Sigma Level Defined

- "Quality": degree of excellence of a Product, Process, Software, IT System, or Service from the *Customer's Viewpoint*
- Every process has Variation. If the outcome is too far from target value (beyond a spec limit), a Defect occurs
- Standard deviation is a measure of statistical variation (spread) about the mean
- Sigma Level of a process is an indication of how often defects are likely to occur
 - = Spec Width / 2 (Std. Deviation)

Matching Product Requirements and Process Capability

Sigma Level	% Out of Spec
6	0.00034
5	0.02327
4	0.62097
3	6.68072
2	30.85375
1	69.14625

Assuming a Long Term 1.5 Sigma Shift

Why DFSS?: Revolutionize Product Development

Reactive Design Quality

DFSS

Predictive Design Quality

From

- Evolving design requirements
- Extensive design rework
- Product performance assessed by "build and test"
- Performance & manufacturability problems fixed <u>after</u> product in use; "fire fights"

Quality "tested in"

To

- Disciplined CCR flowdown
- Controlled design parameters
- Product performance modeled and simulated
- <u>Designed</u> for robust performance
 & manufacturability

Quality "designed in"

Requirements 'Flow Down' from Customer and Design Capabilities 'Flow Up'

Typical DFSS Process Define the Project Business Case, Opportunity Statement, Goal, Define Scope and Boundaries (DIDOV) Capture & Analyze Voice of Customer Identify **Identify Critical Customer Requirements (CCRs) & CCRs Establish System Specifications via QFD 1** Identify Conceptual Design Statistical Design **Determine System Functionality** Map CCRs to System Functions via QFD2 **Understand & Control** Variation **Design Develop Detailed Design** Map Functions to Design Parameters via QFD3 **Maximize Probability** of Meeting Performance. **Design for Robust Performance** Reliability & Minimize Sensitivity to Design & Operating Variations **Manufacturing** Goals Design for Manufacturability Minimize Sensitivity to Mfg Variations **Optimize Optimize** for 6 σ Design **Predict Quality** Predict σ; Iterate to Meet Quality Target **Not OK** Test & Validate Assess Performance, Reliability, Mfg, ... **Validate** Not OK OK **Deliver to Customer** Y = f(x)Source: Design for Six Sigma, K. Yang

Voice of the Customer and Quality Function Deployment

Intense Focus on what the *Customer* wants

- Customers buy System Performance and Reliability
- Design Decisions are made at Subsystem, Assembly and Parts
- Systems engineering allows
 - Flow Down of Customer Requirements to lower design levels
 - Rational Design Decisions to achieve system-level goals

Design for Robust Performance

Quantify relationships between CCRs & Design Parameters

- First principles models
- Numerical models (finite elements, lumped parameter, ...)
- Designed experiments (DOE)
- QFD

Regression to obtain Transfer Function:

$$Y = f(X_1, X_2, X_3) \cong a_0 + a_1X_1 + a_2X_2 + a_3X_3 + a_4X_1X_2 + a_5X_1X_3 + a_6X_2X_3 + ...$$

Main Effects

2-Way Interactions

Capture knowledge in Transfer Function libraries & design templates

Statistical vs Deterministic Design:

Switching Power Supply Example

- V_{in}: 85 275 V
- V_O: 5 V, +/- 5%
- 6σ quality
- Low cost

Baseline design

- Isolated switching converter/ feedback section
- Low cost, combine power MOSFET and control circuit in a 3-pin package

Deterministic Design

Analysis: Transfer function
$$V_o = V_{ref} + R_2 \left(\frac{V_{ref}}{R_1} + I_b \right)$$

Choose values for	Design Parameter	<u>Value</u>
design parameters:	LM 4311 ref voltage, V _{ref} (volts)	2.495
	R ₁ (ohms)	10000
	R ₂ (ohms)	10000
	Bias current, I _h (amps)	5.0E-06

Substituting: Output voltage = 5.04 volts

Baseline design meets 5V, +/- 5% performance requirement But, quality level is not yet determined

Statistical Design

Analysis: Transfer Function

$$V_o = V_{ref} + R_2 \left(\frac{V_{ref}}{R_1} + I_b \right)$$

Design parameters are statistical. Engineer selects mean values and a measure of variability (e.g., standard deviation, based on component tolerance).

Design Parameter	Mean	Std Dev	Tole	rances
			Lower	Upper
LM 4311 V _{ref} (volts)	2.495	0.0283	0.085	0.085
R ₁ (ohms)	10000	33.3333	1%	1%
R ₂ (ohms)	10000	33.3333	1%	1%
Bias current, I _b (amps)	5.0E-06	1.15E-06	2.00E-06	2.00E-06

Do a statistical analysis (e.g., Monte Carlo), using Transfer Function and statistical parameter values

Results:

 V_o mean 	5.04 volts			
 V_o std dev 	0.059 volts			
• Defects/million	188 (5 066)			

Baseline design meets 5V, +/- 5% performance But quality level is only 5σ

Statistical Design: Approaching "6o"

Design optimization analysis:

- Use Transfer Function to understand response surface shape and output voltage sensitivity to each design parameter
- Reduce defect rate by: (1) shift mean values or (2) reduce design parameter variance

Design Parameter	Mean	Std Dev	<u>Sensitivity</u>
LM 431I V _{ref} (volts)	2.495	0.0283	2
R ₁ (ohms)	10000	33.3333	-0.0002495
R ₂ (ohms)	10000	33.3333	0.0002545
Bias current, I _b (amps)	5.0E-06	1.15E-06	10000

Design Mod 1: Center distribution by increasing R₁ to 10160 ohms

Results:

• V_o mean 5.00 volts

• V_o std dev 0.058 volts

• Defects/million 20 (5.61s)

Statistical Design: Reaching "6o"

Design Mod 2: Mod 1 plus reduce variance by using 0.1% resistors

Design Mod 3: Mod 2 plus LM 431Al MOSFET to reduce V_{ref} variance

Summary

	<u>Mean</u>	Std Dev	<u>DPMO</u>	<u>Z</u> st	Cost
Baseline Design	5.04	0.059	189	5.06	100%
Mod 1: Centered via R	5.00	0.058	20	5.61	100%
Mod 2: 0.1% Resistors	5.00	0.057	13	5.7	101%
Mod 3: LM 431AI	5.00	0.041	~0	7.58	105%

Statistical design enables prediction of performance, quality and cost during the design process

What's Different About DFSS?

- Disciplined, comprehensive process applicable to all Designs
- "Line of Sight" from Customer Needs to all System Design levels
- Statistical design to understand . . . and reduce Variation
- "New" tools: QFD, Function Analysis, TRIZ, DOE, DFM, statistical tolerance, Robust Design, multi-variable optimizations
- Quality prediction throughout development
- Dedicated Team can develop a Breakthrough Design in months

But, does not replace need for sound Engineering Judgment Questions &

Discussion

Appendix

Mapping of Common Tools to DFSS Stages

<u>I</u>	Voice of Customer	Market Rese Ana	arch & Brand lysis	QFD	<u>Kano</u> <u>Model</u>	Bench Marking	Quality History: Surveys, Ratings, etc.	Quality History: Warranty, etc.	Quality Loss Function		
<u>D</u>	Concept Generation & Selection	<u>Designed</u>	System & Functional Diagrams	<u>P-</u> <u>Diagram</u>	<u>FMEA</u>	Axiomatic Design		Dimension Variation Analysis	<u>Gage</u> <u>R&R</u>	FDVS: Target Setting &	DFSS Scorecard
<u>o</u>	Numeric/ Heuristic Optimization	Experiment	Parameter Design	Toleranc e Design	Analytical Reliability & Robustne ss (AR&R)	Statistical Tolerance	Robust Engineeri ng Design and R&R Checklist	Process Capability	<u>Control</u> <u>Plan</u>	<u>Verification</u>	
<u>v</u>	<u>Design Ve</u>	erification Plan &	& Report	Robustness/Reliability Demonstration							