E-Bike Motor and Controller

ECE 480 Team 9

Tyler Borysiak | Myles Moore | Alex Sklar | Stephen Dunn | Joshua Lamb

Agenda

Motivation

MSU Connection

Sponsor- Mr. Stephen Blosser, Assistive Technology Specialist, RCPD

Facilitator- Professor Virginia M. Ayres, Ph.D.

MICHIGAN STATE UNIVERSITY

Resource Center for **Persons with Disabilities**

Key Design Idea Alternator alternative to a DC motor

Short-term Goals

□ Alternator as a low-cost alternative to a DC

motor

- Create a motor controller for an alternator as motor
- □ Test novel alternator system

Long-term Goals

 Transform the way personal transportation is used globally

□ Make personal electric vehicles

affordable and accessible to

"More for less for more" - R.A. Mashelkar

Design Specifications

Low-cost

- □ Wide range of speed
- Efficient
- Automatic control for enhanced performance
- Increased torque at low speeds

System Design

- Power supply andDC/DC converters
- Hall-effect throttle and AMS sensor provide inputs to microcontroller
- Microcontroller drivesMOSFET circuits

Alternator as Motor

Typically used as battery charger

□ E-Bike: Use concept in reverse!

Motor Controllers

- DC motor controllers vary pulse width
- AC motors use variable frequency drives
- Team 9 design uses pulse at maximum quadrature

Circuit Design

□ MOSFETs

Gate Driving Circuit

Dever Supply Circuit

Peripheral Connectic

Texas Instruments Microcontroller

- □ TM4C123GH6PMI
- □ Interface between Circuit and Software
- Connects with rows of pins to the MOSFET driver circuit
- Pulses the MOSFETs at optimal angles

AMS Magnetic Rotary Sensor

❑ AS5132

- □ Alternator Software Interface
- Measures Absolute Angles from
 - Magnet 360 degrees
- Mounts to end of rotor shaft

User Input: Throttle

User Interface to Software

□ Analogue to Digital Converter

Software Algorithm

□ Precalculate quadrature angles (at startup)

// the optimal quadrature angle at which to push the rotor is calculated given
// the base angle of the stator coil minus (that is, counter-clockwise) the timing
// angle. This creates a quadrature point around which to pulse the stator.
mOptimalAngle = baseAngle - timing; // for clockwise operation, make this a plus instead.

□ Read from the sensors

Determine the correct stator coil to activate

□ Activate/deactivate the pins

Testing: Torque

□ Key parameter: Torque

Used to calculate efficiency and power

Methods of measurement

Testing: Input Power

Testing: RPM

Overall Level of Success	Design Specification	Achieved?
	Working DC motor alternative	Yes
	Inexpensive design	Yes
	Wide range of speed	Yes
High degree of success! Especially for a first prototype		<u> </u>
	Automatic controls for enhanced performance	Yes
	Increased torque at low speeds	Yes
	Increased efficiency	Partial
	Reverse	Partial

Cost

Gate Drivers

- □ Eliminate Evaluation Board
- □ Lower Current Mosfets
- □ Buy components in bulk

Part Description	Quantity	Cost of Each Part	Total Cost
1/4' x 1/8' Magnets	1	\$0.38	\$0.38
AMS AS5132 Rotary Sensor	1	\$6.30	\$6.30
Hall Effect Throttle	1	\$14.99	\$14.99
Recovery Power Rectifier	4	\$1.59	\$6.36
MOSFET N-Ch 100V 100A	5	\$0.83	\$4.13
MOSFET P-Ch 100V 76A	4	\$2.16	\$8.64
12 V Battery	1	\$11.50	\$11.50
Automotive Alternator	1	\$20.00	\$20.00
Voltage Regulators	2	\$1.55	\$3.10
Header Pins	5	\$0.10	\$0.50
Color Coded Resistors	47	\$0.03	\$1.41
9V Zener Diodes	9	\$0.10	\$0.90
1N4003 Diodes	4	\$0.14	\$0.56
Capacitors	7	\$0.15	\$1.05
5ft 10 AWG Wire	1	\$2.70	\$2.70
TM4C123GXL Microcontroller	1	\$13.49	\$13.49
20A Circuit Fuse	1	\$3.00	\$3.00
Total Cost			\$99.01

Forward to Production

□ Microcontroller Integration into Circuit

□ Torque Testing with a Dynamometer

□ Software Improvements to Increase Efficiency

Improvements to circuit design by using MOSFET drivers

Outside Interest

Texas Instruments future sponsorship

Marathon grant

MSU provisional patent application
 has been filed

Demonstration