POWER SAVING USING MICROCONTROLLERS

Why and How?

INTRODUCTION

- Why is reducing power consumption important?
- Hardware vs. Software methods
- The need to balance power consumption with performance needs
- Examples

POWER FLOW IN AND OUT

ENERGY CONSERVATION

Power Saving?

Less current from Vcc and Input pin

Reduce the current to ground, heat and Output pin

SAVE POWER FROM GROUND AND OUTPUT

Hardware designer	User
Leakage current	Frequency
Vdd	
Output capacitance	

SAVE POWER FROM HEAT DISSIPATION

•In a conductor, heat was caused by electron collisions during drifting

•Superconductor

T800 Terminator

HOW TO SAVE POWER

Power Down Modes

Clocking Systems

Interrupts

Peripherals

POWER-DOWN MODES

- Most important feature to meet current-budget
- Control clock frequency
- Control CPU power

CLOCKING SYSTEMS

- Microcontrollers may enter and exit low-power modes several times per second
- Current is wasted while CPU waits for stable clock
- Most low-power MCUs have "instant on clocks"

INSTANT-ON CLOCKS

- Some ready for CPU in less than 10-20us
- Some have two stage clock wake up
- Provides a low freq. clock while high freq. clock stabilizes
 - Can take 1ms longer
- On these devices, CPU may be operational in 15us
 - But runs on incorrect frequency
- CPU consumes less current at low frequencies
- Inaccurate frequency can relate to inaccurate timing
 - If accurate timing is necessary, the CPU must wait for the clock to stabilize.

INTERRUPTS

- Goes hand in hand with system clock flexibility
- Bring MCU out of low-power mode
 - More interrupts, more currentsaving flexibility
- Without interrupt capability, MCU must poll the keypad or buttons often
 - Controlling polling requires a timer
 - Additional current
- With interrupt, CPU can sleep until a button is pushed

WHAT ARE MCU PERIPHERALS?

- Peripherals are components on a chip which have programmable input/ output capability
- Examples:
 - Timers
 - Event Counters
 - PWM generators
 - ADC/DAC

LOW POWER PERIPHERALS

- Some MCUs don't have low power peripherals
- Two types of low power peripheral ability
 - Individual enable/disable
 - Automatic enable/disable
- A true low-power peripheral is one that consumes no current when not in use

SPECIAL DETAILS OF POWER SAVING ON MCUS

- In today's battery driven world, power saving is a must for many consumer based applications
- Most modern day microprocessors/controllers have a variety of onboard power-saving features
 - Compare TI vs. Microchip
- T1
 - MSP430 Line of "Ultra Low Power MCU's"
- Microchip
 - PIC nanoWatt eXtreme Low Power MCU's

MSP430 - LOW POWER MODES (LPMs)

- Active
- LPM0 CPU, Master Clock are disabled
- LPM1 Same as LPM0, with the DCO and DC generator disabled if they aren't used for the Sub-System Master Clock
- LPM2 Only DC Generator and the Auxiliary Clock are active
- LPM3 Only Auxiliary Clock is active
- LPM4 All clocks disabled; CPU disabled.

MSP430 - OPERATING MODES FLOWCHART

MSP430 - OPERATING MODES

PIC nanoWatt- OPERATING MODES

TABLE 1:	POWER-SAVING OPERATING MODES FOR nanoWatt TECHNOLOGY DE	VICES
IABLE 1:	POWER-SAVING OPERATING MODES FOR NANOWATT TECHNOLOGY DE	VICES

Operating Mode	Active Clocks	Active Peripherals	Wake-up Sources	Typical Current	Typical Usage
Deep Sleep ⁽¹⁾	Timer1/SOSC INTRC/LPRC	• RTCC • DSWDT • DSBOR • INTO	• RTCC • DSWDT • DSBOR • INTO • MCLR	< 50 nA	Long life, battery-based applications Applications with increased Sleep times ⁽³⁾
Sieep	Timer1/SOSC INTRC/LPRC A/D RC	• RTCC • WDT • ADC • Comparators • CVREF • INTx • Timer1 • HLVD • BOR	All device wake-up sources (see device data sheet)	50-100 nA	Most low-power applications
Idle	Timer1/SOSC INTRC/LPRC A/D RC	All Peripherals	All device wake-up sources (see device data sheet)	25% of Run Current	Any time the device is wait- ing for an event to occur (e.g., external or peripheral interrupts)
Doze ⁽²⁾	All Clocks	All Peripherals	Software or interrupt wake-up	35-75% of Run Current	Applications with high-speed peripherals, but requiring low CPU use
Run	All Clocks	All Peripherals	N/A	See device data sheet	Normal operation

Note 1: Available on PIC18 and PIC24 devices with nanoWatt XLP™ Technology only.

- 2: Available on PIC24, dsPIC and PIC32 devices only.
- Refer to "Deciding Between Sleep and Deep Sleep" for guidance on when to use Sleep or Deep Sleep modes.

PIC VS. MSP430

	Sleep Mode	BOR	WDT	RAM	Timer/ RTC	I/O State Maintained	Wake-up Time
	LPM3	Yes	Yes	Yes	Yes	Yes	Fast
MSP430	LPM4	Yes	No	Yes	No	Yes	Fast
	LPM5	No	No	No	No	No	Extended
PIC MCU	Sleep	Yes	Yes	Yes	Yes	Yes	Fast
w/XLP	Deep Sleep	Yes	Yes	No	Yes	Yes	Extended

APPLICATION NOTE EXAMPLES

- Both TI, and Microchip tested their processors against each other
- TI found that the MSP430 line was most efficient, while Microchip found their nanoWatt line to be the most efficient
 - Application should be deciding factor

MSP430

- Stable, high speed clock
- Interrupts vs. polling
- Design for low

MSP430

- 16-bit Architecture is actually more efficient
- @ 1 MHz, MSP430 needs only 6us vs. 24us for the 8-bit competition
- Less code → less power

	16-Bit MCU		8-Bit MCU
mov.w	&ADC10MEM, &RAM	movf	ADRESH, W
		movwf	RAML
		bsf	0x20
		movlf	ADCHRESL, W
		bcf	0x20
		movwf	RAMH

LTC2382-16

- Low Noise, Low Power ADC:6.5mW at500ksps
- Internal Timer
- Low Power ADC Drivers
- Power down when not converting

QUESTIONS

