

How PID Control Works and Implemented on the MSP430

Mark Barnhill

ECE480 Design Team 4

Application Note

November 19, 2010

EXECUTIVE SUMMARY
A PID controller is the most common instrument used when control of a variable is needed such

as, speed, temperature, pressure, and other variables. A PID controller is used to continuously

vary a regulator which adjusts the variable being controlled. A PID controller can be

implemented in code using simple but precise calculations.

Keywords: PID controller, MSP430

INTRODUCTION
Control of a system is a very important component in many applications today. A proportional-

integral-derivative (PID) controller is a control loop feedback mechanism used in many

industrial control applications. An error signal is calculated by evaluating the difference

between some desired value and the actual output of the system. The controller performs the

PID math functions on this calculated error and the sum is applied to some machine. Each part

of the PID controller has different effects on the response of the system. The process of

calculating the error is repeated continuously each time the output changes and the PID

controller math functions are applied to this new error. This application note will instruct the

user how a PID controller works and implemented on the MSP430.

OBJECTIVE
The objective of this application note is to provide the reader with the information needed to

understand how PID controllers work and implemented on the MSP430. It is assumed the user

has a basic understanding of the MSP430 microcontroller and basic C coding.

BACKGROUND
The PID controller is made up of three separate terms: the proportional term, the integral term,

and the derivative term (Figure 1). Each term in the controller affects a different aspect of the

output of the system. The input to the controller is the calculated error. The derivative and

integral of this calculated error is taken so it can be used in the controller. The proportional

term is calculated by taking the proportion gain, Kp, times the magnitude of the calculated

error. The proportional term will decrease the steady state error and rise time, but increase the

overshoot in the system. The integral term is calculated by taking the integral gain, Ki,

multiplied by the integral of the calculated error. The integral term decreases the rise time,

increases the overshoot and settling time, and eliminates the steady state error. The derivative

term is calculated by taking the derivative gain, Kd, multiplied by the derivative of the calculated

error. The derivative term decreases both the overshoot and settling times.

Figure 1: System with a PID Controller

IMPLEMENTATION
The PID controller is implemented on the MSP430 using a macro. A macro is used when a

complex or repetitive task needs to be implemented. The input values of the macro are defined

in the main portion of the program while the macro is implemented in a header file referenced

by the main program.

 \ #define PID_MACRO(v)

 v.Err = v.Ref - v.Fdb; /* Compute the error */ \

 v.Up = v.Kp * v.Err; /* Compute Up */ \

 v.Ui = v.Ui + v.Ki*v.Up + v.Kc*v.SatErr; /* Compute Ui */ \

 v.OutPreSat = v.Up + v.Ui; /* Compute pre-saturated output */ \

 if (v.OutPreSat > v.OutMax) /* Saturate output */ \

 {v.Out = v.OutMax;} \

 else if (v.OutPreSat < v.OutMin) \

 {v.Out = v.OutMin;} \

 else \

 {v.Out = v.OutPreSat;} \

 v.SatErr = v.Out - v.OutPreSat; /* Compute saturate difference */ \

 v.Up1 = v.Up;

// Add the lines below if derivative output is needed following the integral

update

// v.Ud = v.Kd * (v.Up - v.Up1);

// v.OutPreSat = v.Up + v.Ui + v.Ud;

If the previous code, v.Ref is the reference value which is set in the main program and v.Fdb is

the feedback sensed from the motor. These two values are used to calculate the error of the

system. The output from the proportional term is, v.Up, while the output from the integral term

is, v.Ui. The integral output is calculated by taking the sum of three terms: the previous integral

output, the product of the integral gain and proportional output, and the product of an integral

gain factor and the saturated error. The proportional and integral terms are sufficient enough

for the motor control, so the derivative term is not needed. If for some reason the derivative

term is needed, the code is commented out at the end to the code above. The pre-saturated

value, v.OutPreSat, is the sum of the proportional and integral outputs. If the v.OutPreSat is

above the maximum output, v.outMax, the output is set to v.outMax, and if the v.OutPreSet is

below the minimum output, v.outMin, the output is set to v.outMin. The saturated difference,

v.SatErr, is calculated by taking the difference between the output after saturation and the

output before saturation. This saturated difference is used when calculating the integral output.

CONCLUSION
Some sort of controller is an essential component when controlling the speed of the motor.

Since the PID controller is most common controller used by industries, it makes sense to use

this controller opposed to other controllers. In motor control we are most interested in

minimizing the rise time and eliminating the steady state error. For this reason, the derivate

term of the controller is not needed for our application of motor control.

REFERENCES

"CTM: PID Tutorial." Control Tutorials for MATLAB. University of Michigan, 26 Aug. 1997. Web.

16 Nov. 2010. <http://www.engin.umich.edu/group/ctm/PID/PID.html>.

Nise, Norman S. Control Systems Engineering. 5th ed. [Hoboken, NJ]: Wiley, 2008. Print.

"The PID Controller." ECircuit Center. 2002. Web. 19 Nov. 2010.

<http://www.ecircuitcenter.com/circuits/pid1/pid1.htm>.

"PID Controller Simplified." My Weblog. 11 May 2008. Web. 16 Nov. 2010.

<http://radhesh.wordpress.com/2008/05/11/pid-controller-simplified/>.

