VLSI Design Issues

Scaling/Moore’s Law has limits due to the physics of material.
- Now L (L=20nm??) affects tx delays (speed), noise, heat (power consumption)
- Scaling increases density of txs and requires “more” interconnect (highways & buses)-more delays (lowering speed) and heat.

Possible Solutions:
- New fabrication solutions/material. E.g., Interconnect layers, new material (copper & low k-material)
- **Improve physical Designs at the transistor level. Create better cell libraries (min Power, min-delay, max speed)**
- Exploit transister analog/physics characteristics
- Invent new transistors
- Invent new architectures
CMOS Inverter: DC Analysis

- Analyze DC Characteristics of CMOS Gates by studying an Inverter

- DC Analysis
 - DC value of a signal in static conditions

- DC Analysis of CMOS Inverter
 - Vin, input voltage
 - Vout, output voltage
 - single power supply, VDD
 - Ground reference
 - find \(V_{\text{out}} = f(V_{\text{in}}) \)

- Voltage Transfer Characteristic (VTC)
 - plot of Vout as a function of Vin
 - vary Vin from 0 to VDD (and in reverse!)
 - find Vout at each value of Vin

\[
\text{pFET: } V_{T_p} < 0 \\
\beta_p = k_p \left(\frac{W}{L} \right)_p
\]

\[
\text{nFET: } V_{T_n} > 0 \\
\beta_n = k_n \left(\frac{W}{L} \right)_n
\]
Inverter Voltage Transfer Characteristics

- **Output High Voltage, \(V_{OH} \)**
 - maximum output voltage
 - occurs when input is low (\(Vin = 0V \))
 - pMOS is ON, nMOS is OFF
 - pMOS pulls \(V_{out} \) to \(V_{DD} \)
 - \(V_{OH} = V_{DD} \)

- **Output Low Voltage, \(V_{OL} \)**
 - minimum output voltage
 - occurs when input is high (\(Vin = V_{DD} \))
 - pMOS is OFF, nMOS is ON
 - nMOS pulls \(V_{out} \) to Ground
 - \(V_{OL} = 0 \) V

- **Logic Swing**
 - Max swing of output signal
 - \(V_L = V_{OH} - V_{OL} \)
 - \(V_L = V_{DD} \)
Inverter Voltage Transfer Characteristics

- **Gate Voltage, \(f(V_{in}) \)**
 - \(V_{GSn} = V_{in} \), \(V_{SGp} = V_{DD} - V_{in} \)

- **Drain Voltage, \(f(V_{out}) \)**
 - \(V_{DSn} = V_{out} \), \(V_{SDp} = V_{DD} - V_{out} \)

Transition Region (between \(V_{OH} \) and \(V_{OL} \))

- **Vin low**
 - \(V_{in} < V_{tn} \)
 - \(M_n \) in Cutoff, OFF
 - \(M_p \) in Triode, V_{out} pulled to V_{DD}
 - \(V_{in} > V_{tn} < V_{out} \)
 - \(M_n \) in Saturation, strong current
 - \(M_p \) in Triode, \(V_{SG} \) & current reducing
 - V_{out} decreases via current through \(M_n \)
 - **Vin = V_{out} (mid point) \approx \frac{1}{2} V_{DD}**
 - \(M_n \) and \(M_p \) both in Saturation
 - maximum current at \(V_{in} = V_{out} \)

- **Vin high**
 - \(V_{in} > V_{out} \), \(V_{in} < V_{DD} - |V_{tp}| \)
 - \(M_n \) in Triode, \(M_p \) in Saturation
 - \(V_{in} > V_{DD} - |V_{tp}| \)
 - \(M_n \) in Triode, \(M_p \) in Cutoff

ECE 410, Prof. F. Salem/Prof. A. Mason notes update
Noise Margin

- Input Low Voltage, V_{IL}
 - $V_{in} < V_{IL} =$ logic 0
 - point 'a' on the plot
 - where slope, $\frac{\partial V_{in}}{\partial V_{out}} = -1$

- Input High Voltage, V_{IH}
 - $V_{in} > V_{IH} =$ logic 1
 - point 'b' on the plot
 - where slope = -1

- Voltage Noise Margins
 - measure of how stable inputs are with respect to signal interference
 - $V_{NM_H} = V_{OH} - V_{IH} = V_{DD} - V_{IH}$
 - $V_{NM_L} = V_{IL} - V_{OL} = V_{IL}$
 - desire large V_{NM_H} and V_{NM_L} for best noise immunity
Switching Threshold

- **Switching threshold** = point on VTC where $V_{out} = V_{in}$
 - also called midpoint voltage, V_M
 - here, $V_{in} = V_{out} = V_M$

- **Calculating V_M**
 - at V_M, both nMOS and pMOS in Saturation
 - in an inverter, $I_{Dn} = I_{Dp}$, always!
 - solve equation for V_M

$$I_{Dn} = \frac{\mu_n C_{OX} W}{2L} (V_{GSn} - V_{in})^2 = \frac{\beta_n}{2} (V_{GSn} - V_{in})^2 = \frac{\beta_p}{2} (V_{SGp} - |V_{tp}|)^2 = I_{Dp}$$

- express in terms of V_M

$$\frac{\beta_n}{2} (V_M - V_{in})^2 = \frac{\beta_p}{2} (V_{DD} - V_M - |V_{tp}|)^2 \Rightarrow \sqrt{\frac{\beta_n}{\beta_p}} (V_M - V_{in}) = V_{DD} - V_M - |V_{tp}|$$

- solve for V_M

$$V_M = \frac{V_{DD} - |V_{tp}| + V_{in} \sqrt{\frac{\beta_n}{\beta_p}}}{1 + \sqrt{\frac{\beta_n}{\beta_p}}}$$
Effect of Transistor Size on VTC

- Recall
 \[\beta_n = k_n' \frac{W}{L} \]
 \[\beta_p = \frac{k_p'}{\beta_p} \left(\frac{W}{L} \right)_p \]

- If nMOS and pMOS are same size
 - \((W/L)_n = (W/L)_p\)
 - \(C_{oxn} = C_{oxp}\) (always)
 \[\beta_n = \frac{\mu_n C_{oxn} \left(\frac{W}{L} \right)_n}{\beta_p} = \frac{\mu_n}{\mu_p} \approx 2\text{or}3 \]

- If \(\left(\frac{W}{L} \right)_p = \frac{\mu_n}{\mu_p} \), then \(\beta_n = 1\)
 since \(L\) normally min. size for all tx, can get betas equal by making \(W_p\) larger than \(W_n\)

- Effect on switching threshold
 - if \(\beta_n \approx \beta_p\) and \(V_{tn} = |V_{tp}|\), \(V_M = VDD/2\), exactly in the middle

- Effect on noise margin
 - if \(\beta_n \approx \beta_p\), \(V_{IH}\) and \(V_{IL}\) both close to \(V_M\) and noise margin is good

\[V_M = \frac{VDD - |V_{tp}| + V_m \sqrt{\frac{\beta_n}{\beta_p}}}{1 + \sqrt{\frac{\beta_n}{\beta_p}}} \]
Example

- **Given**
 - \(k'n = 140\mu A/V^2, \ Vtn = 0.7V, \ VDD = 3V \)
 - \(k'p = 60\mu A/V^2, \ Vtp = -0.7V \)

- **Find**
 - a) tx size ratio so that \(V_M = 1.5V \)
 - b) \(V_M \) if tx are same size

Transition pushed lower as beta ratio increases
CMOS Inverter: Transient Analysis

- Analyze Transient Characteristics of CMOS Gates by studying an Inverter

- Transient Analysis
 - signal value as a function of time

- Transient Analysis of CMOS Inverter
 - $V_{in}(t)$, input voltage, function of time
 - $V_{out}(t)$, output voltage, function of time
 - V_{DD} and Ground, DC (not function of time)
 - find $V_{out}(t) = f(V_{in}(t))$

- Transient Parameters
 - output signal rise and fall time
 - propagation delay
Transient Response

- Recall: the RC nMOS Transistor Model

![Diagram of an nMOS transistor and an RC circuit model]
Transient Response

- Response to step change in input
 - delays in output due to parasitic R & C
- Inverter RC Model
 - Resistances (linear model)
 - $R_n = 1/\left[\beta_n(V_{DD} - V_{tn})\right]$
 - $R_p = 1/\left[\beta_p(V_{DD} - |V_{tp}|)\right]$
 - Output Cap. (only output is important)
 - C_{Dn} (nMOS drain capacitance)
 - $C_{Dn} = \frac{1}{2} Cox W_n L + C_j A_{Dnbot} + C_{jsw} P_{Dnsw}$
 - C_{Dp} (pMOS drain capacitance)
 - $C_{Dp} = \frac{1}{2} Cox W_p L + C_j A_{Dpbot} + C_{jsw} P_{Dpsw}$
 - Load capacitance, due to gates attached at the output
 - $C_L = 3 C_{in} = 3 (C_{Gn} + C_{Gp})$, 3 is a “typical” load
 - Total Output Capacitance
 - $C_{out} = C_{Dn} + C_{Dp} + C_L$

\[V_in\] \[\Rightarrow\] \[\downarrow\] \[\downarrow\] \[\Rightarrow\]
\[\downarrow\] \[\downarrow\] \[\downarrow\]
\[C_{L}\] \[\downarrow\] \[\downarrow\] \[\downarrow\]
\[C_{in}\] \[\downarrow\] \[\downarrow\] \[\downarrow\]
\[\downarrow\] \[\downarrow\] \[\downarrow\]
Fall Time

• Fall Time, t_f
 - time for output to fall from '1' to '0'
 - derivation:
 \[
 i = -C_{out} \frac{\partial V_{out}}{\partial t} = \frac{V_{out}}{R_n}
 \]

 - initial condition, $V_{out}(0) = V_{DD}$
 - solution
 \[
 V_{out}(t) = V_{DD}e^{-\frac{t}{\tau_n}}
 \]
 \[
 t = \tau_n \ln\left(\frac{V_{DD}}{V_{out}}\right)
 \]
 - definition
 - t_f is time to fall from 90% value $[V_1,t_x]$ to 10% value $[V_0,t_y]$
 \[
 t = \tau_n \left[\ln\left(\frac{V_{DD}}{0.1V_{DD}}\right) - \ln\left(\frac{V_{DD}}{0.9V_{DD}}\right)\right]
 \]
 - $t_f = 2.2 \, \tau_n$
Rise Time

- **Rise Time,** t_r
 - time for output to rise from '0' to '1'
 - derivation:
 $$ i = C_{out} \frac{\partial V_{out}}{\partial t} = \frac{V_{DD} - V_{out}}{R_p} $$
 - initial condition, $V_{out}(0) = 0V$
 - solution
 $$ V_{out}(t) = V_{DD} \left[1 - e^{-t/t_p} \right] $$
 - time constant
 $$ \tau_p = R_p C_{out} $$

- **definition**
 - t_f is time to rise from 10% value $[V_0, t_u]$ to 90% value $[V_1, t_v]$
 - $t_r = 2.2 \tau_p$

- **Maximum Signal Frequency**
 - $f_{max} = 1/(t_r + t_f)$
 - faster than this and the output can't settle
Propagation Delay

- **Propagation Delay,** t_p
 - measures speed of output reaction to input change
 - $t_p = \frac{1}{2} (t_{pf} + t_{pr})$
- **Fall propagation delay,** t_{pf}
 - time for output to fall by 50%
 - reference to input switch
- **Rise propagation delay,** t_{pr}
 - time for output to rise by 50%
 - reference to input switch
- **Ideal expression** (if input is step change)
 - $t_{pf} = \ln(2) \tau_n$
 - $t_{pr} = \ln(2) \tau_p$
- **Total Propagation Delay**
 - $t_p = 0.35(\tau_n + \tau_p)$

Propagation delay measurement:
- from time input reaches 50% value
- to time output reaches 50% value

Add rise and fall propagation delays for total value
Switching Speed - Resistance

• **Rise & Fall Time**
 - \(t_f = 2.2 \tau_n, \ t_r = 2.2 \tau_p \)

• **Propagation Delay**
 - \(t_p = 0.35(\tau_n + \tau_p) \)

• **In General**
 - delay \(\propto \tau_n + \tau_p \)
 - \(\tau_n + \tau_p = Cout (R_n+R_p) \)

• **Define delay in terms of design parameters**
 - \(R_n+R_p = \frac{(V_{DD}-Vt)(\beta_n + \beta_p)}{\beta_n \beta_p (V_{DD}-Vt)^2} \)
 - \(R_n+R_p = \frac{\beta_n + \beta_p}{\beta_n \beta_p (V_{DD}-Vt)} \)

• if \(Vt = Vtn = |Vtp| \)

\[\tau_n = R_n C_{out} \quad \tau_p = R_p C_{out} \]

\[R_n = \frac{1}{[\beta_n(V_{DD}-Vtn)]} \quad \beta = \mu_{Cox} (W/L) \]

\[R_p = \frac{1}{[\beta_p(V_{DD}-|Vtp|)]} \]

\[C_{out} = C_{Dn} + C_{Dp} + C_L \]

Beta Matched if \(\beta_n = \beta_p = \beta \),

\[R_n+R_p = \frac{2}{\beta (V_{DD}-Vt) \mu_{Cox} W (V_{DD}-Vt)} = \frac{2L}{\beta (V_{DD}-Vt) \mu_{Cox} W (V_{DD}-Vt)} \]

Width Matched if \(W_n = W_p = W \), and \(L = L_n = L_p \)

\[R_n+R_p = \frac{L (\mu_n + \mu_p)}{(\mu_n \mu_p) \mu_{Cox} W (V_{DD}-Vt)} \]

To decrease R's, \(\downarrow L, \uparrow W, \uparrow VDD, \ (\uparrow \mu_p, \uparrow \mu_{Cox}) \)
Switching Speed - Capacitance

- From Resistance we have
 - $\downarrow L$, $\uparrow W$, $\uparrow VDD$, ($\uparrow \mu_p, \uparrow Cox$)
 - but $\uparrow VDD$ increases power
 - $\uparrow W$ increases $Cout$

- $Cout = C_{Dn} + C_{Dp} + C_L$

 - if $L=L_n=L_p$

 - $C_L = 3 (C_{Gn} + C_{Gp}) = 3 Cox (W_nL+W_pL)$

 - $C_{Dn} = \frac{1}{2} Cox W_n L + C_j A_{Dnbot} + C_{jsw} P_{Dnsw}$

 - $C_{Dp} = \frac{1}{2} Cox W_p L + C_j A_{Dpbot} + C_{jsw} P_{Dpsw}$

\[\text{To decrease } Cout, \downarrow L, \downarrow W, (\uparrow C_j, \downarrow Cox)\]

- $Cout \approx L (W_n+W_p) [3 \frac{1}{2} Cox +2 C_j]$

- $Cout \propto L (W_n+W_p)$

- Delay $\propto Cout (R_n+R_p) \propto L W \frac{L}{W VDD} = \frac{L^2}{VDD}$

Decreasing L (reducing feature size) is best way to improve speed!
Switching Speed - Local Modification

- Previous analysis applies to the overall design
 - shows that reducing feature size is critical for higher speed
 - general result useful for creating cell libraries

- How do you improve speed within a specific gate?
 - increasing W in one gate will not increase \(C_G \) of the load gates
 - \(Cout = C_{Dn} + C_{Dp} + C_L \)
 - increasing W in one logic gate will increase \(C_{Dn/p} \) but not \(C_L \)
 - \(C_L \) depends on the size of the tx gates at the output
 - as long as they keep minimum W, \(C_L \) will be constant
 - thus, increasing W is a good way to improve the speed within a local point
 - But, increasing W increases chip area needed, which is bad
 - fast circuits need more chip area (chip "real estate")

- Increasing VDD is not a good choice because it increases power consumption
CMOS Power Consumption

- \(P = P_{DC} + P_{dyn} \)
 - \(P_{DC} \): DC (static) term
 - \(P_{dyn} \): dynamic (signal changing) term

- \(P_{DC} \)
 - \(P = I_{DD} V_{DD} \)
 - \(I_{DD} \): DC current from power supply
 - ideally, \(I_{DD} = 0 \) in CMOS: ideally only current during switching action
 - leakage currents cause \(I_{DD} > 0 \), define quiescent leakage current, \(I_{DDQ} \) (due largely to leakage at substrate junctions)
 - \(P_{DC} = I_{DDQ} V_{DD} \)

- \(P_{dyn} \), power required to switch the state of a gate
 - charge transferred during transition, \(Q_e = Cout V_{DD} \)
 - assume each gate must transfer this charge 1x/clock cycle
 - \(P_{average} = V_{DD} Q_e f = Cout V_{DD}^2 f \), \(f \) = frequency of signal change

- **Total Power**, \(P = I_{DDQ} V_{DD} + Cout V_{DD}^2 f \)
 - Power increases with \(Cout \) and frequency, and strongly with \(VDD \) (second order).
Multi-Input Gate Signal Transitions

- In multi-input gates multiple signal transitions produce output changes

- What signal transitions need to be analyzed?
 - for a general N-input gate with M_0 low output states and M_1 high output states
 - # high-to-low output transitions $= M_0 \cdot M_1$
 - # low-to-high output transitions $= M_1 \cdot M_0$
 - total transitions to be characterized $= 2 \cdot M_0 \cdot M_1$
 - example: NAND has $M_0 = 1, M_1 = 3$
 - don't test/characterize cases without output transitions

- Worst-case delay is the slowest of all possible cases
 - worst-case high-to-low
 - worst-case low-to-high
 - often different input transitions for each of these cases
Series/Parallel Equivalent Circuits

- Scale both \(W \) and \(L \)
 - no effective change in \(W/L \)
 - increases gate capacitance

inputs must be at same value/voltage

- Series Transistors
 - increases effective \(L \)

- Parallel Transistors
 - increases effective \(W \)
NAND: DC Analysis

- Multiple Inputs
- Multiple Transitions
- Multiple VTCs
 - VTC varies with transition
 - transition from 0,0 to 1,1 pushed right of others
 - why?
 - V_M varies with transition
 - assume all tx have same L
 - $V_M = V_A = V_B = V_{out}$
 - can merge transistors at this point
 - if $W_{pA} = W_{pB}$ and $W_{nA} = W_{nB}$
 - series nMOS, $\beta_n \Rightarrow \frac{1}{2} \beta_n$
 - parallel pMOS, $\beta_p \Rightarrow 2 \beta_p$
 - can now calculate the NAND V_M
NAND Switching Point

- **Calculate VM for NAND**
 - 0,0 to 1,1 transition
 - all tx change states (on, off)
 - in other transitions, only 2 change
 - \(V_M = V_A = V_B = V_{out} \)
 - set \(I_{Dn} = I_{Dp} \), solve for \(V_M \)

 \[
 V_M = \frac{V_{DD} - \left| V_p \right| + V_m \frac{1}{2} \sqrt{\frac{\beta_n}{\beta_p}}} {1 + \frac{1}{2} \sqrt{\frac{\beta_n}{\beta_p}}}
 \]

- denominator reduced more
 - VTC shifts right

- **For NAND with N inputs**

 \[
 V_M = \frac{V_{DD} - \left| V_p \right| + V_m \frac{1}{N} \sqrt{\frac{\beta_n}{\beta_p}}} {1 + \frac{1}{N} \sqrt{\frac{\beta_n}{\beta_p}}}
 \]

- series nMOS means more resistance to output **falling**, shifts VTC to right
 to balance this effect and set \(V_M \) to \(V_{DD}/2 \)
 can increase \(\beta \) by increasing \(W_n \)

but, since \(\mu_n > \mu_p \), \(V_M \approx V_{DD}/2 \) when \(W_n = W_p \)
NOR: DC Analysis

- **Similar Analysis to NAND**
- **Critical Transition**
 - 0,0 to 1,1
 - when all transistors change
- **V_M for NOR2 critical transition**
 - if $W_{pA} = W_{pB}$ and $W_{nA} = W_{nB}$
 - parallel nMOS, $\beta_n \Rightarrow 2 \beta_n$
 - series pMOS, $\beta_p \Rightarrow \frac{1}{2} \beta_p$

\[
V_M = \frac{V_{DD} - |V_p| + 2V_m \sqrt{\frac{\beta_n}{\beta_p}}}{1 + 2 \sqrt{\frac{\beta_n}{\beta_p}}}
\text{ for NOR2}
\]
\[
V_M = \frac{V_{DD} - |V_p| + NV_m \sqrt{\frac{\beta_n}{\beta_p}}}{1 + N \sqrt{\frac{\beta_n}{\beta_p}}}
\text{ for NOR-N}
\]

- series pMOS resistance means slower rise
- VTC shifted to the left
- to set V_M to $V_{DD}/2$, increase W_p
 - this will increase β_p

<table>
<thead>
<tr>
<th>V_A</th>
<th>V_B</th>
<th>V_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>V_{DD}</td>
</tr>
<tr>
<td>(i)</td>
<td>V_{DD}</td>
<td>0</td>
</tr>
<tr>
<td>(ii)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) Transition table

(b) VTC family

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Lecture Notes 7.23
NAND: Transient Analysis

- NAND RC Circuit
 - R: standard channel resistance
 - C: \(C_{\text{out}} = C_L + C_{Dn} + 2C_{Dp} \)
- Rise Time, \(t_r \)
 - Worst case charge circuit
 - 1 pMOS ON
 - \(t_r = 2.2 \, \tau_p \)
 - \(\tau_p = R_p \, C_{\text{out}} \)
 - best case charge circuit
 - 2 pMOS ON, \(R_p \Rightarrow R_p/2 \)
- Fall Time, \(t_f \)
 - Discharge Circuit
 - 2 series nMOS, \(R_n \Rightarrow 2R_n \)
 - must account for internal cap, \(C_x \)
 - \(t_f = 2.2 \, \tau_n \)
 - \(\tau_n = C_{\text{out}} \, (2 \, R_n) + C_x \, R_n \)
 - \(C_x = C_{Sn} + C_{Dn} \)
NOR: Transient Analysis

- **NAND RC Circuit**
 - R: standard channel resistance
 - C: $C_{out} = C_L + 2C_{Dn} + C_{Dp}$

- **Fall Time, t_f**
 - Worst case discharge circuit
 - 1 nMOS ON
 - $t_f = 2.2 \tau_n$
 - $\tau_n = R_n C_{out}$
 - best case discharge circuit
 - 2 nMOS ON, $R_n \Rightarrow R_n/2$

- **Rise Time, t_r**
 - Charge Circuit
 - 2 series pMOS, $R_p \Rightarrow 2R_p$
 - must account for internal cap, C_y
 - $t_r = 2.2 \tau_p$
 - $\tau_p = C_{out} (2R_p) + C_y R_p$
NAND/NOR Performance

- Inverter: symmetry ($V_M=V_{DD}/2$), $\beta_n = \beta_p$
 - $(W/L)_p = \mu_n/\mu_p (W/L)_n$
- Match INV performance with NAND
 - pMOS, $\beta_p = \beta_p$, same as inverter
 - nMOS, $\beta_N = 2\beta_n$, to balance for 2 series nMOS
- Match INV performance with NOR
 - pMOS, $\beta_p = 2\beta_p$, to balance for 2 series pMOS
 - nMOS, $\beta_N = \beta_n$, same as inverter
- NAND and NOR will still be slower due to larger C_{out}
- This can be extended to 3, 4, ... N input NAND/NOR gates

β is adjusted by changing transistor size (width)
NAND/NOR Transient Summary

- **Critical Delay Path**
 - paths through series transistors will be slower
 - more series transistors means worse delays

- **Tx Sizing Considerations**
 - increase W in series transistors
 - balance β_n/β_p for each cell

- **Worst Case Transition**
 - when all series transistor go from OFF to ON
 - and all internal caps have to be
 - charged (NOR)
 - discharged (NAND)
Performance Considerations

- Speed based on β_n, β_p and parasitic caps
- DC performance (V_M, noise) based on β_n/β_p
- Design for speed not necessarily provide good DC performance
- Generally set tx size to optimize speed and then test DC characteristics to ensure adequate noise immunity

• Review Inverter: Our performance reference point
 - for symmetry ($V_M = V_{DD}/2$), $\beta_n = \beta_p$
 - which requires $(W/L)_p = \mu_n/\mu_p (W/L)_n$
 • Use inverter as reference point for more complex gates

• Apply slowest arriving inputs to series node closest to output
 - let faster signals begin to charge/discharge nodes closer to VDD and Ground
Timing in Complex Logic Gates

- Critical delay path is due to series-connected transistors
- Example: $f = x (y+z)
 - assume all tx are same size
- Fall time critical delay
 - worst case, x ON, and y or z ON
 - $t_f = 2.2 \tau_n$
 - $\tau_n = R_n C_n + 2 R_n C_{out}$
 - $C_{out} = 2C_{Dp} + C_{Dn} + C_L$
 - $C_n = 2C_{Dn} + C_{Sn}$
- Rise time critical delay
 - worst case, y and z ON, x OFF
 - $t_r = 2.2 \tau_p$
 - $\tau_p = R_p C_p + 2 R_p C_{out}$
 - $C_{out} = 2C_{Dp} + C_{Dn} + C_L$
 - $C_p = C_{Dp} + C_{Sp}$

Size vs. tx speed considerations

\[W_{nx} \Rightarrow R_n \text{ but } C_{out} \text{ and } C_n \]
\[W_{ny} \Rightarrow C_n \text{ but } R_n \]
\[W_{pz} \Rightarrow R_p \text{ but } C_{out} \text{ and } C_p \]
\[W_{px} \Rightarrow \text{no effect on critical path!} \]
Sizing in Complex Logic Gates

- Improving speed within a single logic gate
- An Example: \(f = (a \cdot b + c \cdot d) \times \)
- nMOS
 - discharge through 3 series nMOS
 - set \(\beta_N = 3 \beta_n \)
- pMOS
 - charge through 2 series pMOS
 - set \(\beta_P = 2 \beta_p \)
 - but, \(M_{xp} \) is alone so \(\beta_{P1} = \beta_p \)
 - but setting \(\beta_{P1} = 2 \beta_p \) might make layout easier
- These large transistors will increase capacitance and layout area and may only give a small increase in speed
- Advanced logic structures are best way to improve speed
Timing in Multi-Gate Circuits

- What is the worst-case delay in multi-gate circuits?
 - too many transitions to test manually

- Critical Path
 - longest delay through a circuit block
 - largest sum of delays, from input to output
 - intuitive analysis: signal that passes through most gates
 - not always true, can be slower path through fewer gates

path through most gates

critical path if delay at D input is very slow
Power in Multi-Input Logic Gates

- **Inverter Power Consumption**
 - \(P = P_{DC} + P_{dyn} = V_{DD}I_{DDQ} + C_{out}V^2_{DD}f \)
 - Assumes gates switch output state once per clock cycle, \(f \)

- **Multi-Input Gates**
 - Same DC component as inverter, \(P_{DC} = V_{DD}I_{DDQ} \)
 - For dynamic power, need to estimate “activity” of the gate, how often will the output be switching
 - \(P_{dyn} = aC_{out}V^2_{DD}f \), \(a \) = activity coefficient
 - Estimate activity from truth table

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(A + B)</th>
<th>(A \cdot B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- \(a = p_0p_1 \)
 - \(p_0 \) = prob. output is at 0
 - \(p_1 \) = prob. of transition to 1

NOR: \(p_0=0.75 \), \(p_1=0.25 \), \(a=3/16 \)
NAND: \(p_0=0.25 \), \(p_1=0.75 \), \(a=3/16 \)
Timing Analysis of Transmission Gates

- **TG** = parallel nMOS and pMOS

- **RC Model**
 - In general, only one tx active at same time
 - nMOS pulls output low
 - pMOS pushes output high
 - \(R_{TG} = \max (R_n, R_p) \)
 - \(C_{in} = C_{Sn} + C_{Dp} \)
 - If output at higher voltage than input
 - Larger W will decrease R but increase Cin

- Note: no connections to VDD-Ground. Input signal, Vin, must drive TG output; TG just adds extra delay
Pass Transistor

- Single nMOS or pMOS tx
- Often used in place of TGs
 - less area and wiring
 - can’t pull to both VDD and Ground
 - typically use nMOS for better speed
- Rise and Fall Times
 - $\tau_n = R_n C_{out}$
 - $t_f = 2.94 \tau_n$
 - $t_r = 18 \tau_n$
 - much slower than fall time
- nMOS can’t pull output to VDD
 - rise time suffers from threshold loss in nMOS