

Electronics Revolution

- Age of electronics
- microcontrollers, DSPs, and other VLSI chips are everywhere

(Digital Camera), Camcorder, PDAs
MP3/CD Player Laptop Cell phone
Games: Nintendo; xbox, etc.

- Electronics of today and tomorrow
- higher performance (speed) circuits
- low power circuits for portable applications
- more mixed signal emphasis
- wireless hardware
- high performance signal processing
- Sensors, actuators, and microsystems

Figure 1.1 (p. 2) The VLSI design funnel.

Figure 1.2 (p.4)
 General overview of the design heirarchy.

VLSI Design Flow

- VLSI
- very large scale integration
- lots of transistors integrated on a single chip
- Top Down Design
- digital mainly
- coded design
- ECE 411
- Bottom Up Design
- cell performance
- Analog/mixed signal
- ECE 410

VLSI Design
Procedure

Integrated Circuit Technologies

- Why does CMOS dominate--Now?
- other technologies
- passive circuits
- III-V devices
- Silicon BJT

- CMOS dominates because:

Fig. 1.1 Family of digital 1 C .

- Silicon is cheaper \rightarrow preferred over other materials
- physics of CMOS is easier to understand???
- CMOS is easier to implement/fabricate
- CMOS provides lower power-delay product
- CMOS is lowest power
- can get more CMOS transistors/functions in same chip area
- BUT! CMOS is not the fastest technology!
- BJT and III-V devices are faster

MOSFET Physical View

- Phvsical Structure of a MOSFET Device

- Schematic Symbol for 4-terminal MOSFET

- Simplified Symbols

CMOS Technology Trends

- Variations over time
- \# transistors / chip: increasing with time
- power / transistor: decreasing with time (constant power density)
- device channel length: decreasing with time
- power supply voltage: decreasing with time

ref: Kuo and Lou, Low-Voltage CMOS VLSI Circuits, Fig. 1.3, p. 3
low power/transistor is critical for future ICs

Moore's Law

- In 1965, Gordon Moore realized there was a striking trend; each new generation of memory chip contained roughly twice as much capacity as its predecessor, and each chip was released within 18-24 months of the previous chip. He reasoned, computing power would rise exponentially over relatively brief periods of time.
- Moore's observation, now known as Moore's Law, described a trend that has continued and is still remarkably accurate. In 26 years the number of transistors on a chip has increased more than 3,200 times, from 2,300 on the 4004 in 1971 to 7.5 million on the Pentium" II processor.

(ref: http://www.intel.com/intel/museum/25anniv/hof/moore.htm)

Power Supply Tends

* http://public.itrs.net/Files/2000UpdateFinal/ORTC2000final.pdf

"Electronics" Building block(s)

- MOSFET Device-- 1950+ to 2020
- New elements in nano technologies are emerging. These include:
- Fin-Transistor
- Memristor: memory resistor- see IEEE Spectrum
- Nano-tubes
- Molecular devices
- Quantum dots
- Etc.

VLSI Design Flow

- VLSI
- very large scale integration
- lots of transistors integrated on a single chip
- Bottom Up Design
- cell performance
- Analog/mixed signal
- ECE 410

VLSI Design
Procedure

MOSFET Physical View

- Phvsical Structure of a MOSFET Device

- Schematic Symbol for 4-terminal MOSFET

- Simplified Symbols

What is a MOSFET?

- Digital integrated circuits rely on transistor switches
- most common device for digital and mixed signal: MOSFET
- Definitions
- MOS = Metal Oxide Semiconductor
- physical layers of the device
- FET = Field Effect Transistor
- What field? What does the field do?
- Are other fields important?
- CMOS = Complementary MOS

- use of both nMOS and pMOS to form a circuit with lowest power consumption.
- Primary Features
- gate; gate oxide (insulator)- very thin (~10^(-10))-- exaggerated in Fig.
- source and drain
- channel
- bulk/substrate

Fundamental Relations in MOSFET

- Electric Fields
- fundamental equation
- electric field: $E=V / d$
- vertical field through gate oxide
- determines charge induced in channel
- horizontal field across channel
- determines source-to-drain current flow

-silicon substrate
$\stackrel{\text { I }}{\underline{I}}$
- Capacitance
- fundamental equations
- capacitor charge: $Q=C V$
- capacitance: $C=\varepsilon \mathrm{A} / \mathrm{d}$

- charge balance on capacitor, Q+ = Q-
- charge on gate is balanced by charge in channel
- what is the source of channel charge? where does it come from?

CMOS Cross Section View

- Cross section of a 2 metal, 1 poly CMOS process

Typical MOSFET Device (nMOS)

n-Channel

Figure 2.11 The final cross section of a CMOS microcircuit with two layers of metal.

- Layout (top view) of the devices above (partial, simplified)

CMOS Circuit Basics

- CMOS = complementary MOS
- uses 2 types of MOSFETs to create logic functions
- nMOS
- pMOS
- CMOS Power Supply
- typically single power supply
- VDD, with Ground reference
- typically uses single power supply
- VDD ranges from (0.6V) 1 V to 5 V
- Logic Levels (voltage-based)
- all voltages between OV and VDD
- Logic '1' = VDD
- Logic 'O' = ground $=0 \mathrm{~V}$

Transistor Switching Characteristics

- nMOS
- switching behavior
- on = closed, when Vin > Vtn
- off = open, when Vin < Vtn
- pMOS
- switching behavior
- on = closed, when Vin < VDD - |Vtp|
- off = open, when Vin > VDD - |Vtp|
- Digital Behavior
- nMOS

Vin		Vout (drain)	
1	Vs=0	device is ON	
0	$?$	device is OFF	
	pMOS		
Vin	Vout (drain)		
1	$?$		

MOSFET Pass Characteristics

- Each type of transistor is better at passing (to output) one digital voltage than the other
- nMOS passes a good low (0) but not a good high (1)
- pMOS passes a good high (1) but not a good low (0)

and P-SWITCHES		
LEVEL	SYMBOL	SWITCH CONDITION
Strong 1	1	P-SWITCH gate $=0$, source $=V_{D D}$ Weak 1
N-SWITCH gate $=1$, source $=V_{D D}$ or		
Strong 0 Weak 0	0	P-SWITCH connected to $V_{D D}$ N-SWITCH gate $=1$, source $=V_{S S}$ P-SWITCH gate $=0$ source $=V_{S S}$ or
High impedance	0	Z-SWITCH connected to $V_{S S}$
N-SWITCH gate $=0$ or P-SWITCH gate $=1$		

Rule to Remember
 'source' is at lowest potential (nMOS) and highest potential (pMOS)

MOSFET Terminal Voltages

- How do you determine one terminal voltage if other 2 are known?
- nMOS
- case 1) if $\mathrm{Vg}>\mathrm{Vi}_{\mathrm{i}}+\mathrm{V}+\mathrm{n}$, then $\mathrm{Vo}_{0}=\mathrm{Vi}$
($\mathrm{Vg}-\mathrm{Vi}>\mathrm{V}+n$)

- pMOS
- case 1) if Vg < $\mathrm{Vi}-|\mathrm{V} t \mathrm{p}|$, then $\mathrm{Vo}=\mathrm{Vi}$

Switch-Level Boolean Logic

- Logic gates are created by using sets of controlled switches
- Characteristics of an assert-high switch

nMOS acts like an assert-high switch

Figure 2.1 Behavior of an assert-high switch
$-y=x \cdot A$, i.e. $y=x$ iff $A=1 \quad$ (iff=if and only if)

Series switches \Rightarrow AND function

Figure 2.2 Series-connected switches

Parallel switches \Rightarrow OR function

Figure 2.4 Parallel-connected switches

Switch-Level Boolean Logic

- Characteristics of an assert-low switch

(a) Closed
$-y=x \cdot \bar{A}$, i.e. $y=x$ if $A=0$

(b) Open
pMOS acts like an assert-low switch

Series assert-low switches \Rightarrow ?

Remember This??
$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\overline{\mathrm{a}+\mathrm{b}}, \quad \overline{\mathrm{a}}+\overline{\mathrm{b}}=\overline{\mathrm{a} \cdot \mathrm{b}}$
DeMorgan relations

NOT function, combining asserthigh and assert-low switches

$a=1 \Rightarrow S W 1$ closed, $S W 2$ open $\Rightarrow y=0=\bar{a}$ $\mathrm{a}=0 \Rightarrow \mathrm{SW} 1$ open, SW 2 closed $\Rightarrow \mathrm{y}=1=\mathrm{a}$

CMOS "Push-Pull" Logic

- CMOS Push-Pull Networks
- pMOS
- "on" when input is low
- pushes output high
- nMOS
- "on" when input is high

- pulls output low
- only one logic network (p or n) is required to produce (1/2-) the logic function???
- but the complementary set allows the "load" to be turned off for zero static power dissipation

TABLE 1.1 The Output Logic Levels of N-SWITCHES and P-SWITCHES

LEVEL	SYMBOL	SWITCH CONDITION
Strong 1	$\mathbf{1}$	P-SWITCH gate $=0$, source $=V_{D D}$
Weak 1	1	N-SWITCH gate $=1$, source $=V_{D D}$ or P-SWITCH connected to $V_{D D}$
Strong 0 Weak 0	$\mathbf{0}$	N-SWITCH gate $=1$, source $=V_{S S}$ P-SWITCH gate $=0$, source $=V_{S S}$ or High impedance
	0	N-SWITCH connected to $V_{S S}$

Review: Basic Transistor Operation

CMOS Circuit Basics

CMOS Pass Characteristics

'source' is at lowest potential (nMOS) and highest potential (pMOS) • nMOS

- 0 in $=0$ out
- VDD in = VDD-Vtn out
- strong '0', weak '1'
- pMOS
- VDD in = VDD out
- 0 in = |Vtp| out
- strong ' 1 ', weak ' 0 '

Review: Switch-Level Boolean Logic

- assert-high switch

$-y=x \cdot A$, i.e. $y=x$ iff $A=1$
- series = AND
- parallel = OR

- assert-low switch
$-y=x \cdot A$, i.e. $y=x$ if $A=0$

- series $=$ NOR
- parallel = NAND
(a) Closed

(b) Open

Creating Logic Gates in CMOS

- All standard Boolean logic functions (INV, NAND, OR, etc.) can be produced in CMOS push-pull circuits.
- Rules for constructing logic gates using CMOS
- use a complementary nMOS/pMOS pair for each input
- connect the output to VDD through pMOS txs
- connect the output to ground through nMOS txs
- ensure the output is always either high or low
- CMOS produces "inverting" logic
- CMOS gates are based on the inverter
- outputs are always inverted logic functions

e.g., NOR, NAND rather than OR, AND
- Logic Properties

DeMorgan's Rules
(a $\cdot \mathrm{b})^{\prime}=\mathrm{a}^{\prime}+\mathrm{b}^{\prime}$
$(a+b)^{\prime}=a^{\prime} \cdot b^{\prime}$

Useful Logic Properties

$$
\begin{array}{cc}
1+x=1 & 0+x=x \\
1 \cdot x=x & 0 \cdot x=0 \\
x+x^{\prime}=1 & x \cdot x^{\prime}=0 \\
a \cdot a=a & a+a=a \\
a b+a c=a(b+c) \\
\hline
\end{array}
$$

Properties which can be proven
$(a+b)(a+c)=a+b c$
$a+a ' b=a+b$

CMOS Inverter

- Inverter Function
- toggle binary logic of a signal
- Inverter Switch Operation

(a)

(b)
input low \rightarrow output high nMOS off/open pMOS on/closed pMOS "on"
\rightarrow output high (1)
input high \rightarrow output low nMOS on/closed pMOS off/open
nMOS "on"
\rightarrow output low (0)
- Inverter Symbol

- Inverter Truth Table

x	$y=\bar{x}$
0	1
1	0

- CMOS Inverter Schematic

nMOS Logic Gates

- Study nMOS logic first, more simple than CMOS
- nMOS Logic
- assume a resistive load to VDD
- nMOS switches pull output low based on inputs
nMOS Inverter

(a) nMOS is off
\rightarrow output is high (1)
(b) nMOS is on
\rightarrow output is low (0)
(a)
(b)
nMOS NOR

$$
c=\overline{a+b}
$$

- parallel switches $=O R$ function
- nMOS pulls low (NOTs the output)

- series switches = AND function
- nMOS pulls low (NOTs the output)

cMOS NOR Gate

- NOR Symbol

- Karnaugh map
- NOR Truth Table

x	y	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

$g(x, y)=\bar{x} \cdot \bar{y} \cdot 1+x \cdot 0+y \cdot 0$

- construct Sum of Products equation with all terms
- each term represents a MOSFET path to the output
- '1' terms are connected to VDD via pMOS
- 'O' terms are connected to ground via nMOS

CMOS NOR Gate

- CMOS NOR Schematic

$$
g(x, y)=\bar{x} \cdot \bar{y} \cdot 1+x \cdot 0+y \cdot 0
$$

- output is LOW if x OR y is true
- parallel nMOS
- output is HIGH when x AND y are false
- series pMOS
- Important Points
- series-parallel arrangement
- when nMOS in series, pMOS in parallel, and visa versa
- true for all CMOS logic gates
- allows us to construct more complex logic functions

CMOS NAND Gate

- NAND Symbol

- CMOS Schematic

- Truth Table

x	y	$\overline{x^{\bullet} y}$
0	0	1
0	1	1
1	0	1
1	1	0

- K-map

$$
\begin{aligned}
\mathrm{g}(\mathrm{x}, \mathrm{y})= & (\overline{\mathrm{x}} \cdot \mathrm{y} \cdot 1)+(\overline{\mathrm{x}} \cdot \mathrm{y} \cdot 1)+(\mathrm{x} \cdot \overline{\mathrm{y}} \cdot 1) \\
& (\mathrm{x} \cdot \mathrm{y} \cdot 0) \\
= & x \cdot y .0+\bar{x} .1+\bar{y} .1
\end{aligned}
$$

- output is LOW if \boldsymbol{x} AND \boldsymbol{y} are true
- series nMOS
- output is HIGH when x OR y is false
- parallel pMOS

3-Input Gates

- NOR3

- Alternate Schematic
- what function?

- note shared gate inputs
- is input order important?
- in series, parallel, both?
- schematic resembles how the circuit will look in physical layout

Review: CMOS NAND/NOR Gates

- NOR Schematic

- output is LOW if x OR y is true
- parallel nMOS
- output is HIGH when x AND y are false
- series pMOS
- NAND Schematic

- output is LOW if x AND y are true
- series nMOS
- output is HIGH when x OR y is false
- parallel pMOS

Complex Combinational Logic

- General logic functions
- for example

$$
f=\overline{a \cdot(b+c)}, \quad f=\overline{(d \cdot e)}+a \cdot(\bar{b}+c)
$$

- How do we construct the CMOS gate?
- use DeMorgan principles to modify expression
- construct nMOS and pMOS networks

$$
\overline{a \cdot b}=\bar{a}+\bar{b} \quad \overline{a+b}=\bar{a} \cdot \bar{b}
$$

- use Structured Logic
- AOI (AND OR INV)
- OAI (OR AND INV)

Using DeMorgan

- DeMorgan Relations
- NAND-OR rule $\overline{a \cdot b}=\bar{a}+\bar{b}$
- bubble pushing illustration

- bubbles = inversions
- NOR-AND rule

- pMOS and bubble pushing
- Parallel-connected pMOS
- assert-low OR
- creates NAND function
- Series-connected pMOS
- assert-low AND
- creates NOR function

$$
g(x, y)=\bar{x} \bar{y}=\overline{x+y}
$$

to implement pMOS this way, must push all bubbles
to the inputs and remove all NAND/NOR output bubbles

Rules for Constructing CMOS Gates

The Mathematical Method

- Given a logic function

$$
F=f(a, b, c)
$$

- Reduce (using DeMorgan) to eliminate inverted operations
- inverted variables are OK, but not operations (NAND, NOR)
- Form pMOS network by complementing the inputs

$$
\mathrm{Fp}=\mathrm{f}(\overline{\mathrm{a}}, \overline{\mathrm{~b}}, \overline{\mathrm{c}})
$$

- Form the nMOS network by complementing the output

$$
\mathrm{Fn}=\overline{\mathrm{f}(\mathrm{a}, \mathrm{~b}, \mathrm{c})}=\overline{\mathrm{F}}
$$

- Construct Fn and Fp using AND/OR series/parallel MOSFET structures
- series = AND, parallel $=O R$

EXAMPLE:

$$
\begin{array}{ll}
\mathrm{F}=\overline{\mathrm{ab}} \Rightarrow & \\
\mathrm{Fp}=\overline{\overline{\mathrm{a}} \overline{\mathrm{~b}}=\mathrm{a}+\mathrm{b} ;} & \text { OR/parallel } \\
\mathrm{Fn}=\overline{\overline{\mathrm{ab}}}=\mathrm{ab} ; & \text { AND/series }
\end{array}
$$

CMOS Combinational Logic Example

- Construct a CMOS logic gate to implement the function:

$$
F=\overline{a \cdot(b+c)}
$$

14 transistors (cascaded gates)

- pMOS
- Apply DeMorgan expansions

$$
\begin{aligned}
& F=\bar{a}+(\overline{b+c}) \\
& F=\bar{a}+(\bar{b} \cdot \bar{c})
\end{aligned}
$$

- Invert inputs for pMOS

$$
F p=a+(b \cdot c)
$$

- Resulting Schematic

6 transistors
(CMOS)

Structured Logic

- Recall CMOS is inherently Inverting logic
- Can use structured circuits to implement general logic functions
- AOI: implements logic function in the order AND, OR, NOT (Invert)
- Example: $F=a \cdot b+c \cdot d$
- operation order: i) a AND b, c AND d, ii) (ab) OR (cd), iii) NOT
- Inverted Sum-of-Products (SOP) form
- OAI: implements logic function in the order OR, AND, NOT (Invert)
- Example: $G=(\overline{x+y) \cdot(z+w)}$
- operation order: i) x OR y, z OR w, ii) $(x+y)$ AND $(z+w)$, iii) NOT
- Inverted Product-of-Sums (POS) form
- Use a structured CMOS array to realize such functions

AOI/OAI nMOS Circuits

- nMOS AOI structure $\quad F=\overline{a \cdot b+c \cdot d}$
- series $\dagger x$ s in parallel

- nMOS OAI structure
- series of parallel txs

$$
F=(\overline{a+e) \cdot(b+f)}
$$

error in textbook Figure 2.45

AOI/OAI pMOS Circuits

- pMOS AOI structure
- series of parallel txs
- opposite of nMOS
(series/parallel)

- pMOS OAI structure
- series $\dagger \times s$ in parallel
- opposite of nMOS
(series/parallel)

Complete CMOS AOI/OAI circuits

(a) AOI circuit

(b) OAI circuit

Implementing Logic in CMOS

- Reducing Logic Functions
- fewest operations \Rightarrow fewest $\dagger \times s$
- minimized function to eliminate $\dagger x s$
- Example: $x y+x z+x v=x(y+z+v)$ 5 operations: 3 operations: 3 AND, 2 OR 1 AND, 2 OR \#txs = \#txs =
- Suggested approach to implement a CMOS logic function
- create nMOS network
- invert output
- reduce function, use DeMorgan to eliminate NANDs/NORs
- implement using series for AND and parallel for OR
- create pMOS network
- complement each operation in nMOS network
- i.e. make parallel into series and visa versa

CMOS Logic Example

- Construct the function below in CMOS

$$
F=\overline{a+b \cdot(c+d)} ; \text { remember AND operations occur before OR }
$$

$$
F n=a+b \cdot(c+d)
$$

- nMOS
- Group 2: c\&d in parallel
- Group 1: b in series with G2
- Group 3: a parallel to G1/G2
- pMOS
- Group 2: c \& d in series
- Group 1: b parallel to G2
- Group 3: a in series with G1/G2

- Circuit has an OAOI organization (AOI with extra OR)

Another Combinational Logic Example

- Construct a CMOS logic gate which implements the function:

$$
F=\bar{a} \cdot(b+\bar{c})
$$

- pMOS
- Apply DeMorgan expansions none needed
- Invert inputs for pMOS
$F p=a \cdot(\bar{b}+c)$
- Resulting Schematic?
- nMOS
- Invert output for nMOS

$$
F_{n}=\overline{\bar{a} \cdot(b+\bar{c})}
$$

- Apply DeMorgan
$F n=a+(\overline{b+\bar{c}})$
$F n=a+\overline{(b} \cdot c)$
- Resulting Schematic?

Yet Another Combinational Logic Example

- Implement the function below by constructing the nMOS network and complementing operations for the pMOS:

$$
F=\overline{\bar{a} \cdot b} \cdot(a+c)
$$

- nMOS
- Invert Output
- $F_{n}=\overline{\bar{a} \cdot b} \cdot(a+c)=\bar{a} \cdot b+\overline{(a+c)}$
- Eliminate NANDs and NORs
- $F n=\bar{a} \cdot b+(\bar{a} \cdot \bar{c})$
- Reduce Function

$$
\text { - } F_{n}=\bar{a} \cdot(b+\bar{c})
$$

- Resulting Schematic?
- Complement operations for pMOS

$$
\text { - } \mathrm{Fp}=\bar{a}+(\mathrm{b} \cdot \overline{\mathrm{c}})
$$

XOR and XNOR

- Exclusive-OR (XOR)
$-a \oplus b=\bar{a} \cdot b+a \cdot \bar{b}$
- not AOI form

a	b	$a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0

- Exclusive-NOR
$-\overline{a \oplus b}=a \cdot b+\bar{a} \cdot \bar{b}$
- inverse of XOR
- XOR/XNOR in AOI form
- XOR: $\overline{\overline{a \oplus b}}=\overline{a \cdot b+\bar{a} \cdot \bar{b}}$, formed by complementing XNOR above
- XNOR: $\overline{a \oplus b}=\overline{\bar{a} \cdot b+a \cdot \bar{b}}$, formed by complementing XOR
thus, interchanging a and \bar{a} (or b and \bar{b}) converts from XOR to XNOR

XOR and XNOR AOI Schematic

(a) Exclusive-OR

(b) Exclusive-NOR note: see textbook, figure 2.57
$-X O R: a \oplus b=\overline{a \cdot b+\bar{a} \cdot \bar{b}}$
$-X N O R: \overline{a \oplus b}=\overline{\bar{a} \cdot b+a \cdot \bar{b}}$

CMOS Transmission Gates

- Function
- gated switch, capable of passing both '1' and '0'
- Formed by a parallel nMOS and pMOS tx

- Controlled by gate select signals, s and \bar{s}
- if $s=1, y=x$, switch is closed, $t \times s$ are on
- if $s=0, y=$ unknown (high impedance), $y=x s$, for $s=1$ switch open, †xs off

Transmission Gate Logic Functions

- TG circuits used extensively in CMOS
- good switch, can pass full range of voltage (VDD-ground)
- 2-to-1 MUX using TGs

$$
\mathrm{F}=\mathrm{Po} \cdot \overline{\mathrm{~s}}+\mathrm{P} 1 \cdot \mathrm{~s}
$$

s	TG0	TG1	F
0	Closed	Open	P_{0}
1	Open	Closed	P_{1}

More TG Functions

- TG XOR and XNOR Gates

- Using TGs instead of "static CMOS"
- TG OR gate

Figure 2.64 (p. 59)
An XNOR gate that uses both TGs and FETs.

(a) Closed switch

(b) Open switch

Figure 2.66 (p. 61)

Behavior of a clocked TG.

Figure 2.67 (p. 61)
Data synchronization using transmission gates.

Figure 2.68 (p. 62)

Block-level system timing diagram.

(a) Clocked adder

(b) Clocked ALU

Figure 2.69 (p. 62)

