

ECE 410: VLSI Design Course Lecture Notes (Uyemura textbook)

Electronics Revolution

- Age of electronics
 - microcontrollers, DSPs, and other VLSI chips are everywhere
- (Digital Camera), Camcorder, PDAs

 MP3/CD Player Laptop Cell phone
 Games: Nintendo; xbox, etc.
- Electronics of today and tomorrow
 - higher performance (speed) circuits
 - low power circuits for portable applications
 - more mixed signal emphasis
 - · wireless hardware
 - high performance signal processing
 - Sensors, actuators, and microsystems

Figure 1.1 (p. 2)
The VLSI design funnel.

Figure 1.2

(p.4)

General

overview of the design heirarchy.

VLSI Design Flow

- · VLSI
 - very large scale integration
 - lots of transistors integrated on a single chip
- Top Down Design
 - digital mainly
 - coded design
 - ECE 411
- Bottom Up Design
 - cell performance
 - Analog/mixed signal
 - ECE 410

Integrated Circuit Technologies

- Why does CMOS dominate--Now?
 - other technologies
 - passive circuits
 - III-V devices
 - Silicon BJT

Digital

CMOS dominates because:

- Fig. 1.1 Family of digital IC.
- Silicon is cheaper → preferred over other materials
- physics of CMOS is easier to understand???
- CMOS is easier to implement/fabricate
- CMOS provides lower power-delay product
- CMOS is lowest power \star

- can get more CMOS transistors/functions in same chip area
- BUT! CMOS is not the fastest technology!
 - BJT and III-V devices are faster

MOSFET Physical View

Physical Structure of a MOSFET Device

Schematic Symbol for 4-terminal MOSFET

· Simplified Symbols

CMOS Technology Trends

Variations over time

- # transistors / chip: increasing with time
- power / transistor: decreasing with time (constant power density)
- device channel length: decreasing with time
- power supply voltage: decreasing with time

low power/transistor is critical for future ICs

Moore's Law

- In 1965, Gordon Moore realized there was a striking trend; each new generation of memory chip contained roughly twice as much capacity as its predecessor, and each chip was released within 18-24 months of the previous chip. He reasoned, computing power would rise exponentially over relatively brief periods of time.
- Moore's observation, now known as Moore's Law, described a trend that has continued and is still remarkably accurate. In 26 years the number of transistors on a chip has increased more than 3,200 times, from 2,300 on the 4004 in 1971 to 7.5 million on the Pentium" II processor.

(ref: http://www.intel.com/intel/museum/25anniv/hof/moore.htm)

Power Supply Tends

Year

"Electronics" Building block(s)

- MOSFET Device-- 1950+ to 2020
- New elements in nano technologies are emerging. These include:
 - Fin-Transistor
 - Memristor: memory resistor- see IEEE Spectrum
 - Nano-tubes
 - Molecular devices
 - Quantum dots
 - Etc.

VLSI Design Flow

- VLSI
 - very large scale integration
 - lots of transistors integrated on a single chip
- Top Down Design
 - digital mainly
 - coded design
 - ECE 411
- Bottom Up Design
 - cell performance
 - Analog/mixed signal
 - ECE 410

MOSFET Physical View

Physical Structure of a MOSFET Device

Schematic Symbol for 4-terminal MOSFET

Simplified Symbols

What is a MOSFET?

- Digital integrated circuits rely on transistor switches
 - most common device for digital and mixed signal: MOSFET
- Definitions
 - MOS = Metal Oxide Semiconductor
 - physical layers of the device
 - FET = Field Effect Transistor
 - What field? What does the field do?
 - Are other fields important?
 - CMOS = Complementary MOS
 - use of both nMOS and pMOS to form a circuit with lowest power consumption.
- Primary Features
 - gate; gate oxide (insulator)- very thin (~10^(-10))-- exaggerated in Fig.
 - source and drain
 - channel
 - bulk/substrate NOTE: "Poly" stands for polysilicon in modern MOSFETs

Fundamental Relations in MOSFET

· Electric Fields

- fundamental equation
 - electric field: E = V/d
- vertical field through gate oxide
 - determines charge induced in channel
- horizontal field across channel
 - · determines source-to-drain current flow

- fundamental equations
 - capacitor charge: Q = CV
 - capacitance: $C = \varepsilon A/d$
- charge balance on capacitor, Q+ = Q-
 - charge on gate is balanced by charge in channel
 - · what is the source of channel charge? where does it come from?

W

← Topview

CMOS Cross Section View

Cross section of a 2 metal, 1 poly CMOS process

Figure 2.11 The final cross section of a CMOS microcircuit with two layers of metal.

Layout (top view) of the devices above (partial, simplified)

CMOS Circuit Basics

- CMOS = complementary MOS
 - uses 2 types of MOSFETs
 to create logic functions
 - nMOS
 - · pMOS
- CMOS Power Supply
 - typically single power supply
 - VDD, with Ground reference
 - typically uses single power supply
 - VDD ranges from (0.6V) 1V to 5V
- Logic Levels (voltage-based)
 - all voltages between OV and VDD
 - Logic '1' = VDD
 - Logic 'O' = ground = OV

Transistor Switching Characteristics

- · nMOS
 - switching behavior
 - on = closed, when Vin > Vtn
 - off = open, when Vin < Vtn
- pMOS
 - switching behavior
 - on = closed, when Vin < VDD |Vtp|
 - off = open, when Vin > VDD |Vtp|
- Digital Behavior
 - nMOS

Vi	n Vout (di	rain)
1	Vs=0	device is ON
0	?	device is OFF

- pMOS

<u>Vi</u>	'n	Vout (drain)	
1		?	device is OFF
0		Vs=VDD=1	device is ON

Rule to Remember 'source' is at

Vout

drain

- lowest potential for nMOS
- highest potential for pMOS

MOSFET Pass Characteristics

- Each type of transistor is better at passing (to output) one digital voltage than the other

 TABLE 1.1 The Output Logic Levels of N-S
 - nMOS passes a good low (0) but not a good high (1)
 - pMOS passes a good high (1) but not a good low (0)

TABLE 1.1 The Output Logic Levels of and P-SWITCHES		
SYMBOL	SWITCH CONDITION	
1	P-SWITCH gate = 0, source = V_{DD}	
1	N-SWITCH gate = 1, source = V_{DD} or	
	P-SWITCH connected to V_{DD}	
0	N-SWITCH gate = 1, source = V_{SS}	
0	P-SWITCH gate = 0, source = V_{SS} or	
	N-SWITCH connected to V_{SS}	
Z	N-SWITCH gate = 0 or P-SWITCH gate =	
	SYMBOL 1 1 0 0	

Passes a good low Max high is VDD-Vtn

$$VDD \qquad Vy = VDD$$

Passes a good high Min low is |Vtp|

Rule to Remember

'source' is at lowest potential (nMOS) and highest potential (pMOS)

MOSFET Terminal Voltages

- How do you determine one terminal voltage if other 2 are known?
 - nMOS
- case 1) if Vg > Vi + Vtn, then Vo = Vi (Vg-Vi > Vtn)
- here Vi is the "source" so the nMOS will pass Vi to Vo case 2) if Vg < Vi + Vtn, then Vo = Vg-Vtn (Vg-Vi < Vtn) here Vo is the "source" so the nMOS output is limited Vg=5V, Vi=2V \Rightarrow Vo = 2V Vg=2V, $Vi=2V \Rightarrow Vo = 1.5V$ For nMOS, max(Vo) = Vg-Vtn
 - pMOS
 - case 1) if Vg < Vi |Vtp|, then Vo = Vi (Vi-Vg > |Vtp|)
- here Vi is the "source" so the pMOS will pass Vi to Vo case 2) if Vg > Vi |Vtp|, then Vo = Vg+|Vtp| (Vi-Vg < |Vtp|)
 here Vo is the "source" so the pMOS output is limited

 Example (Vtp=-0.5V): Vg=2V, $Vi=5V \Rightarrow Vo=5V$ Vg=2V, $Vi=2V \Rightarrow Vo = 2.5V$ For pMOS, min(Vo) = Vg+|Vtp|

Switch-Level Boolean Logic

- Logic gates are created by using sets of controlled switches
- Characteristics of an assert-high switch

nMOS acts like an
assert-high switch

Figure 2.1 Behavior of an assert-high switch

$$-y = x \cdot A$$
, i.e. $y = x$ iff $A = 1$

(iff=if and only if)

Series switches ⇒ AND function

Figure 2.2 Series-connected switches

Figure 2.4 Parallel-connected switches

Switch-Level Boolean Logic

Characteristics of an assert-low switch

pMOS acts like an assert-low switch

- $y = x \cdot \overline{A}$, i.e. y = x if A = 0

error in figure 2.5

Series assert-low switches \Rightarrow ?

NOT function, combining assert-high and assert-low switches

 $a=1 \Rightarrow SW1 \text{ closed}, SW2 \text{ open} \Rightarrow y=0 = \overline{a}$

 $a=0 \Rightarrow$ SW1 open, SW2 closed \Rightarrow y=1 = a

Remember This??

$$\overline{a} \cdot \overline{b} = \overline{a + b}, \quad \overline{a} + \overline{b} = \overline{a \cdot b}$$

DeMorgan relations

CMOS "Push-Pull" Logic

- CMOS Push-Pull Networks
 - pMOS
 - "on" when input is low
 - pushes output high
 - nMOS
 - "on" when input is high
 - pulls output low

- only one logic network (p or n) is required to produce (1/2-) the logic function???
- but the complementary set allows the "load" to be turned off for <u>zero static power</u> <u>dissipation</u>

TABLE 1.1 The Output Logic Levels of N-SWITCHES and P-SWITCHES		
LEVEL	SYMBOL	SWITCH CONDITION
Strong 1	1	P-SWITCH gate = 0, source = V_{DD}
Weak 1	1	N-SWITCH gate = 1, source = V_{DD} or
		P-SWITCH connected to V_{DD}
Strong 0	0	N-SWITCH gate = 1, source = V_{SS}
Weak 0	0	P-SWITCH gate = 0, source = V_{SS} or
		N-SWITCH connected to V_{SS}
High impedance	Z	N-SWITCH gate = 0 or P-SWITCH gate = 1

Review: Basic Transistor Operation

CMOS Circuit Basics

CMOS Pass Characteristics

'source' is at lowest potential (nMOS) and highest potential (pMOS)

- nMOS
 - 0 in = 0 out
 - VDD in = VDD-Vtn out
 - strong '0', weak '1'
- pMOS
 - VDD in = VDD out
 - 0 in = |Vtp| out
 - strong '1', weak '0'

Review: Switch-Level Boolean Logic

assert-high switch

 $- y = x \cdot A$, i.e. y = x iff A = 1

(a) Open

(b) Closed

– series = AND

– parallel = OR

assert-low switch

-
$$y = x \cdot \overline{A}$$
, i.e. $y = x$ if $A = 0$

– series = NOR

(a) Closed

(b) Open

parallel = NAND

Creating Logic Gates in CMOS

- All standard Boolean logic functions (INV, NAND, OR, etc.) can be produced in CMOS push-pull circuits.
- Rules for constructing logic gates using CMOS
 - use a complementary nMOS/pMOS pair for each input
 - connect the output to VDD through pMOS txs
 - connect the output to ground through nMOS txs
 - ensure the output is always either high or low
- CMOS produces "inverting" logic
 - CMOS gates are based on the inverter
 - outputs are always inverted logic functions
 e.g., NOR, NAND rather than OR, AND

Logic Properties

DeMorgan's Rules

$$(a \cdot b)' = a' + b'$$

 $(a + b)' = a' \cdot b'$

Useful Logic Properties

$$1 + x = 1$$
 $0 + x = x$
 $1 \cdot x = x$ $0 \cdot x = 0$
 $x + x' = 1$ $x \cdot x' = 0$
 $a \cdot a = a$ $a + a = a$
 $ab + ac = a (b+c)$

Properties which can be proven

$$(a+b)(a+c) = a+bc$$

a + a'b = a + b

CMOS Inverter

- Inverter Function
 - toggle binary logic of a signal
- Inverter Symbol

Inverter Switch Operation

Vin=VDD V_{out} = 0 V

Inverter Truth Table

$$\begin{array}{c|cc}
x & y = \overline{x} \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

CMOS Inverter Schematic

input low → output high nMOS off/open pMOS on/closed

input high → output low nMOS on/closed pMOS off/open

nMOS "on"

→ output low (0)

nMOS Logic Gates

- Study nMOS logic first, more simple than CMOS
- nMOS Logic
 - assume a resistive load to VDD
 - nMOS switches pull output low based on inputs

nMOS NOR

- parallel switches = OR function
- nMOS pulls low (NOTs the output)
- series switches = AND function
- nMOS pulls low (NOTs the output)

CMOS NOR Gate

NOR Symbol

Karnaugh map

· NOR Truth Table

Х	У	<u>x+y</u>
0	0	1
0	1	0
1	0	0
1	1	0

$$g(x,y) = \overline{x} \cdot \overline{y} \cdot 1 + x \cdot 0 + y \cdot 0$$

- construct Sum of Products equation with all terms
- each term represents a MOSFET path to the output
- '1' terms are connected to VDD via pMOS
- '0' terms are connected to ground via nMOS

CMOS NOR Gate

CMOS NOR Schematic

$$g(x,y) = \overline{x} \cdot \overline{y} \cdot 1 + x \cdot 0 + y \cdot 0$$

- output is LOW if x OR y is true
 - parallel nMOS
 - output is HIGH when x AND y are false
 - series pMOS

- Important Points
 - series-parallel arrangement
 - when nMOS in series, pMOS in parallel, and visa versa
 - true for all CMOS logic gates
 - · allows us to construct more complex logic functions

CMOS NAND Gate

NAND Symbol

CMOS Schematic

Truth Table

x y	<u>x•y</u>
0 0	1
0 1	1
1 0	1
1 1	0

K-map

$$g(x,y) = (\overline{x} \cdot \overline{y} \cdot 1) + (\overline{x} \cdot y \cdot 1) + (x \cdot \overline{y} \cdot 1)$$

$$(x \cdot y \cdot 0)$$

$$= x \cdot y \cdot 0 + \overline{x} \cdot 1 + \overline{y} \cdot 1$$

- series nMOS
- output is HIGH when x OR y is false
 - parallel pMOS

3-Input Gates

- · Alternate Schematic
 - what function?

- note shared gate inputs
 - is input order important?
 - · in series, parallel, both?
- schematic resembles how the circuit will look in physical layout

Review: CMOS NAND/NOR Gates

NOR Schematic

- output is LOW if x OR y is true
 - parallel nMOS
- output is HIGH when x AND y are false
 - series pMOS

NAND Schematic

- output is LOW if x AND y are true
 - series nMOS
- output is HIGH when x OR y is false
 - parallel pMOS

Complex Combinational Logic

- General logic functions
 - for example

$$f = \overline{a \cdot (b + c)}, \quad f = (\overline{d \cdot e}) + a \cdot (\overline{b} + c)$$

- How do we construct the CMOS gate?
 - use DeMorgan principles to modify expression
 - construct nMOS and pMOS networks

$$\overline{a \cdot b} = \overline{a + b}$$
 $\overline{a + b} = \overline{a \cdot b}$

- use Structured Logic
 - · AOI (AND OR INV)
 - · OAI (OR AND INV)

Using DeMorgan

- DeMorgan Relations
 - NAND-OR rule

bubble pushing illustration

- bubbles = inversions
- NOR-AND rule

$$\overline{a+b} = \overline{a} \cdot \overline{b}$$

to implement pMOS this way, <u>must push all bubbles</u> to the inputs and <u>remove all NAND/NOR</u> output bubbles

- pMOS and bubble pushing
 - Parallel-connected pMOS

- assert-low OR
- · creates NAND function
- Series-connected pMOS

- assert-low AND
- creates NOR function

Rules for Constructing CMOS Gates

The Mathematical Method

Given a logic function

$$F = f(a, b, c)$$

- Reduce (using DeMorgan) to eliminate inverted operations
 - inverted variables are OK, but not operations (NAND, NOR)
- Form pMOS network by complementing the **inputs** $Fp = f(\overline{a}, \overline{b}, \overline{c})$

- Construct Fn and Fp using AND/OR series/parallel MOSFET structures
 - series = AND, parallel = OR

EXAMPLE:

$$F = \overline{ab} \Rightarrow$$

$$Fp = \overline{a} \overline{b} = a+b;$$
 OR/parallel

$$Fn = \overline{ab} = ab;$$
 AND/series

complementary p-channel

network

n-channel network -o V_{out}

CMOS Combinational Logic Example

Construct a CMOS logic gate to implement the function:

$$F = \overline{a \cdot (b + c)}$$

14 transistors (cascaded gates)

- pMOS
 - Apply DeMorgan expansions

$$F = \overline{a} + (\overline{b} + \overline{c})$$

$$F = \overline{a} + (\overline{b} \cdot \overline{c})$$

- Invert inputs for pMOS

$$\mathsf{Fp} = \mathsf{a} + (\mathsf{b} \cdot \mathsf{c})$$

- Resulting Schematic

6 transistors (CMOS)

- · nMOS
 - Invert output for nMOS
 Fn = a · (b + c)
 - Apply DeMorgan
 none needed
 - Resulting Schematic

Structured Logic

- Recall CMOS is inherently Inverting logic
- Can use structured circuits to implement general logic functions
- AOI: implements logic function in the order AND, OR, NOT (Invert)
 - Example: $F = a \cdot b + c \cdot d$
 - operation order: i) a AND b, c AND d, ii) (ab) OR (cd), iii) NOT
 - Inverted <u>Sum-of-Products</u> (SOP) form
- OAI: implements logic function in the order OR, AND, NOT (Invert)
 - Example: $G = (\overline{x+y}) \cdot (z+w)$
 - operation order: i) x OR y, z OR w, ii) (x+y) AND (z+w), iii) NOT
 - Inverted <u>Product-of-Sums</u> (POS) form
 - Use a structured CMOS array to realize such functions

AOI/OAI nMOS Circuits

nMOS AOI structure

$$F = a \cdot b + c \cdot d$$

- series txs in parallel

- nMOS OAI structure
 - series of parallel txs

error in textbook Figure 2.45

AOI/OAI pMOS Circuits

- pMOS AOI structure
 - series of parallel txs
 - opposite of nMOS (series/parallel)

- pMOS OAI structure
 - series txs in parallel
 - opposite of nMOS

 V_{DD}

Complete CMOS AOI/OAI circuits

Implementing Logic in CMOS

- Reducing Logic Functions
 - fewest operations ⇒ fewest txs
 - minimized function to eliminate txs

```
- Example: x y + x z + x v = x (y + z + v)

5 operations: 3 operations:

3 AND, 2 OR

# txs = # txs =
```

- Suggested approach to implement a CMOS logic function
 - create nMOS network
 - invert output
 - reduce function, use DeMorgan to eliminate NANDs/NORs
 - · implement using series for AND and parallel for OR
 - create pMOS network
 - complement each operation in nMOS network
 - i.e. make parallel into series and visa versa

CMOS Logic Example

Construct the function below in CMOS

 $F = a + b \cdot (c + d)$; remember AND operations occur before OR

$$Fn = a + b \cdot (c + d)$$

- nMOS
 - Group 2: c & d in parallel
 - Group 1: b in series with G2
 - Group 3: a parallel to G1/G2
- pMOS
 - Group 2: c & d in series
 - Group 1: b parallel to G2
 - Group 3: a in series with G1/G2

Circuit has an OAOI organization (AOI with extra OR)

Another Combinational Logic Example

 Construct a CMOS logic gate which implements the function:

$$F = \overline{a \cdot (b + c)}$$

- pMOS
 - Apply DeMorgan expansions
 none needed
 - Invert inputs for pMOS $Fp = a \cdot (\overline{b} + c)$
 - Resulting Schematic?

- · nMOS
 - Inver<u>t</u> output for nMOS Fn = $a \cdot (b + c)$
 - Apply DeMorgan Fn = $a + (b+\overline{c})$ Fn = $a + (\overline{b} \cdot c)$
 - Resulting Schematic?

Yet Another Combinational Logic Example

 Implement the function below by constructing the nMOS network and complementing operations for the pMOS:

$$F = \overline{a \cdot b} \cdot (a + c)$$

- nMOS
 - Invert Output

• Fn =
$$\overline{a \cdot b} \cdot (a + c) = \overline{a \cdot b} + (a + c)$$

- Eliminate NANDs and NORs

• Fn =
$$\overline{a}$$
 • b + $(\overline{a}$ • $\overline{c})$

- Reduce Function

• Fn =
$$\overline{a}$$
 • (b + \overline{c})

- Resulting Schematic?
- Complement operations for pMOS

• Fp =
$$\overline{a}$$
 + (b • \overline{c})

XOR and XNOR

Exclusive-OR (XOR)

$$-a \oplus b = \overline{a} \cdot b + a \cdot b$$

- not AOI form

а	b	a ⊕ b
0	Ó	0
0	ì	ĺ
1	0	1
1	1	0

Exclusive-NOR

$$-\overline{a \oplus b} = a \cdot b + \overline{a \cdot b}$$

- inverse of XOR

· XOR/XNOR in AOI form

- XOR: $\overline{a \oplus b} = a \cdot b + \overline{a} \cdot \overline{b}$, formed by complementing XNOR above

- XNOR: $\overline{a \oplus b} = \overline{a \cdot b} + a \cdot \overline{b}$, formed by complementing XOR

thus, interchanging a and \overline{a} (or b and \overline{b}) converts from XOR to XNOR

XOR and XNOR AOI Schematic

(a) Exclusive-OR

(b) Exclusive-NOR

note: see textbook, figure 2.57

-XOR:
$$a \oplus b = \overline{a \cdot b + \overline{a} \cdot \overline{b}}$$

CMOS Transmission Gates

Function

recall: pMOS passes a good '1' and nMOS passes a good '0'

- gated switch, capable of passing both '1' and '0'
- Formed by a parallel nMOS and pMOS tx

- Controlled by gate select signals, s and \overline{s}
 - if s = 1, y = x, switch is closed, txs are on
 - if s = 0, y = unknown (high impedance), y = x s, for s=1 switch open, txs off

Transmission Gate Logic Functions

- TG circuits used extensively in CMOS
 - good switch, can pass full range of voltage (VDD-ground)
- · 2-to-1 MUX using TGs

$$F = Po \cdot s + P1 \cdot s$$

s	TG0	TG1	F
0	Closed	Open	P_{0}
1	Open	Closed	P_1

More TG Functions

TG XOR and XNOR Gates

(a) XOR circuit

(b) XNOR circuit

- Using TGs instead of "static CMOS"
 - TG OR gate

Figure 2.64 (p. 59)

(b) Open switch

Figure 2.66 (p. 61)

Behavior of a clocked TG.

Figure 2.67 (p. 61)

Data synchronization using transmission gates.

Figure 2.68 (p. 62)

Block-level system timing diagram.

(a) Clocked adder

(b) Clocked ALU

Figure 2.69 (p. 62)

Control of binary words using clocking planes.

