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ECE 410: VLSI Design
Course Lecture Notes

(Uyemura textbook)

Professor Fathi Salem

Michigan State University

We will be updating the notes this Semester.
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Electronics Revolution
• Age of electronics

– microcontrollers, DSPs, and 
other VLSI chips are 
everywhere

• Electronics of today and 
tomorrow
– higher performance (speed) 

circuits

– low power circuits for 
portable applications

– more mixed signal emphasis
• wireless hardware

• high performance signal 
processing

• Sensors, actuators, and 
microsystems

(Digital Camera), Camcorder, PDAs

MP3/CD Player    Laptop         Cell phone

Games: Nintendo; xbox, etc.  
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Figure 1.1  (p. 2)
The VLSI design 

funnel.
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Figure 1.2  
(p.4)

General 
overview of 
the design 
heirarchy.
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VLSI Design Flow
• VLSI

– very large scale 
integration

– lots of transistors 
integrated on a 
single chip

• Top Down Design
– digital mainly

– coded design

– ECE 411

• Bottom Up Design
– cell performance

– Analog/mixed signal

– ECE 410
VLSI Design
Procedure

System Specifications

Logic Synthesis
Chip Floorplanning

Chip-level Integration

Manufacturing

Finished VLSI Chip

Schematic Design

LVS
(layout vs. schematic)

Parasitic Extraction

Post-Layout
Simulation

Digital Cell
Library

Mixed-signal
Analog Blocks

DRC
(design rule check)

Simulation

Physical Design

Process Models
SPICE

Process
Characterization

Process
Design

Process Capabilities
and Requirements

Process
Design Rules

Abstract High-level Model
VHDL, Verilog HDL

Top
Down
Design

Bottom
Up

Design

Functional Simulation

Functional/Timing/
Performance Specifications
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Integrated Circuit Technologies
• Why does CMOS dominate--Now?

– other technologies
• passive circuits
• III-V devices
• Silicon BJT

• CMOS dominates because:
– Silicon is cheaper � preferred over other materials
– physics of CMOS is easier to understand???
– CMOS is easier to implement/fabricate
– CMOS provides lower power-delay product
– CMOS is lowest power
– can get more CMOS transistors/functions in same chip area

• BUT! CMOS is not the fastest technology!
– BJT and III-V devices are faster
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• Physical Structure of a MOSFET Device

• Schematic Symbol for 4-terminal MOSFET

• Simplified Symbols

MOSFET Physical View

source drain

Substrate, bulk, well, or back gate

gate

nMOS pMOS

critical dimension = “feature size”
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CMOS Technology Trends

• Variations over time
– # transistors / chip: increasing with time

– power / transistor: decreasing with time (constant power density)

– device channel length: decreasing with time

– power supply voltage: decreasing with time

ref: Kuo and Lou, Low-Voltage CMOS VLSI Circuits, Fig. 1.3, p. 3

transistors /

chip

power /

transistor

channel length

supply voltage

low power/transistor is critical for future ICs
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Moore’s Law
• In 1965, Gordon Moore realized there 

was a striking trend; each new 
generation of memory chip contained 
roughly twice as much capacity as its 
predecessor, and each chip was 
released within 18-24 months of the 
previous chip.  He reasoned, computing 
power would rise exponentially over 
relatively brief periods of time.

• Moore's observation, now known as 
Moore's Law, described a trend that 
has continued and is still remarkably 
accurate. In 26 years the number of 
transistors on a chip has increased 
more than 3,200 times, from 2,300 on 
the 4004 in 1971 to 7.5 million on the 
Pentium¨ II processor.

10µm 1µm 0.35µm   45 nm

(ref: http://www.intel.com/intel/museum/25anniv/hof/moore.htm)
Feature Size

180 130 90 60 40 30Feature Size (nm)
1999 2001 2004 2008 2011 2014

1.8 V

1.5 V

1.2 V

0.9 V

0.6 V 0.6 V

Year

Power Supply Tends

Digital Core Voltage Projections
from the 2000 ITRS*

* http://public.itrs.net/Files/2000UpdateFinal/ORTC2000final.pdf

2 Billion
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• MOSFET Device-- 1950+ to 2020

• New elements in nano technologies are 
emerging. These include: 
– Fin-Transistor

– Memristor: memory resistor- see IEEE Spectrum

– Nano-tubes

– Molecular devices

– Quantum dots

– Etc.  

“Electronics” Building block(s)
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VLSI Design Flow
• VLSI

– very large scale 
integration

– lots of transistors 
integrated on a 
single chip

• Top Down Design
– digital mainly

– coded design

– ECE 411

• Bottom Up Design
– cell performance

– Analog/mixed signal

– ECE 410
VLSI Design
Procedure

System Specifications

Logic Synthesis
Chip Floorplanning

Chip-level Integration

Manufacturing

Finished VLSI Chip

Schematic Design

LVS
(layout vs. schematic)

Parasitic Extraction

Post-Layout
Simulation

Digital Cell
Library

Mixed-signal
Analog Blocks

DRC
(design rule check)

Simulation

Physical Design

Process Models
SPICE

Process
Characterization

Process
Design

Process Capabilities
and Requirements

Process
Design Rules

Abstract High-level Model
VHDL, Verilog HDL

Top
Down
Design

Bottom
Up

Design

Functional Simulation

Functional/Timing/
Performance Specifications
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• Physical Structure of a MOSFET Device

• Schematic Symbol for 4-terminal MOSFET

• Simplified Symbols

MOSFET Physical View

source drain

Substrate, bulk, well, or back gate

gate

nMOS pMOS

critical dimension = “feature size”
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What is a MOSFET?
• Digital integrated circuits rely on transistor switches

– most common device for digital and mixed signal: MOSFET

• Definitions
– MOS = Metal Oxide Semiconductor

• physical layers of the device

– FET = Field Effect Transistor

• What field?  What does the field do?

• Are other fields important?

– CMOS = Complementary MOS

• use of both nMOS and pMOS to form 

a circuit with lowest power consumption.

• Primary Features
– gate; gate oxide (insulator)– very thin (~10^(-10))-- exaggerated in Fig.
– source and drain
– channel
– bulk/substrate

Poly

Oxide
EEEE

V

gate

insulator

silicon substrate

drain- - - - - - - - - - - -
channel

source

Semi-

conductor

NOTE: “Poly” stands for polysilicon in modern MOSFETs
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Fundamental Relations in MOSFET

• Electric Fields
– fundamental equation

• electric field: E = V/d

– vertical field through gate oxide
• determines charge induced in channel

– horizontal field across channel
• determines source-to-drain current flow

• Capacitance
– fundamental equations

• capacitor charge: Q = CV

• capacitance: C = ε A/d

– charge balance on capacitor, Q+ = Q-
• charge on gate is balanced by charge in channel

• what is the source of channel charge? where does it come from?

EEEE

V
gate

insulator

silicon substrate

drain- - - - - - - - - -

- -

channelsource

Q+Q+

Q-

W

L

� Topview
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CMOS Cross Section View
• Cross section of a 2 metal, 1 poly CMOS process

• Layout (top view) of the devices above (partial, simplified)

Typical MOSFET Device (nMOS)
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CMOS Circuit Basics

nMOS

gategate

drain

source

source

drain

pMOS

• CMOS = complementary MOS

– uses 2 types of MOSFETs 

to create logic functions

• nMOS

• pMOS

• CMOS Power Supply

– typically single power supply

– VDD, with Ground reference

• typically uses single power supply

• VDD ranges from (0.6V) 1V to 5V

• Logic Levels (voltage-based)

– all voltages between 0V and VDD

– Logic ‘1’ = VDD

– Logic ‘0’ = ground = 0V

+
-VDD

VDD

=
CMOS
logic
circuit

CMOS
logic
circuit

V
VDD

logic 1

voltages

logic 0

voltages

undefined
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Transistor Switching Characteristics
• nMOS

– switching behavior
• on = closed, when Vin > Vtn 

• off = open, when Vin < Vtn

• pMOS
– switching behavior

• on = closed, when Vin < VDD - |Vtp|

• off = open, when Vin > VDD - |Vtp|

• Digital Behavior
– nMOS

– pMOS

pMOS

nMOS

nMOS
  Vgs > Vtn = on+

Vgs
-

Vin
gate

drain

source

Vin

+
Vsg

-

gate

source

drain

pMOS
  Vsg > |Vtp| = on
  Vsg = VDD - Vin

Rule to Remember
‘source’ is at 
• lowest potential for nMOS
• highest potential for pMOS

Vin

VDD
pMOS

nMOS

VDD-|Vtp|

Vtn

on

off

off

on

Vin   Vout (drain)

1        Vs=0     device is ON

0        ?           device is OFF

Vin   Vout (drain)

1        ?                   device is OFF

0        Vs=VDD=1   device is ON

Vout

Vout
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MOSFET Pass Characteristics

nMOS

pMOS

Rule to Remember
‘source’ is at lowest potential (nMOS) and highest potential (pMOS)

+
Vgs=Vtn

-0 V VDD

VDD VDD

Vy = 0 V Vy =
VDD-Vtn

-
Vsg=|Vtp|

+VDD 0 V

0 V 0 V

Vy = VDD Vy = |Vtp|

on when gate 
is ‘low’

on when gate 
is ‘high’

Passes a good low

Max high is VDD-Vtn

Passes a good high

Min low is |Vtp|

• Each type of transistor is better at passing (to output) one digital 
voltage than the other
– nMOS passes a good low (0) but not a good high (1)

– pMOS passes a good high (1) but not a good low (0)
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MOSFET Terminal Voltages
• How do you determine one terminal voltage if other 2 are known?

– nMOS
• case 1) if Vg > Vi + Vtn, then Vo = Vi            (Vg-Vi > Vtn)

– here Vi is the “source” so the nMOS will pass Vi to Vo

• case 2) if Vg < Vi + Vtn, then Vo = Vg-Vtn    (Vg-Vi < Vtn)
– here Vo is the “source” so the nMOS output is limited

• Example (Vtn=0.5V): Vg=5V, Vi=2V ⇒ Vo = 2V

Vg=2V, Vi=2V ⇒ Vo = 1.5V

– pMOS
• case 1) if Vg < Vi - |Vtp|, then Vo = Vi              (Vi-Vg > |Vtp|)

– here Vi is the “source” so the pMOS will pass Vi to Vo

• case 2) if Vg > Vi - |Vtp|, then Vo = Vg+|Vtp|   (Vi-Vg < |Vtp|)
– here Vo is the “source” so the pMOS output is limited

• Example (Vtp=-0.5V): Vg=2V, Vi=5V ⇒ Vo = 5V

Vg=2V, Vi=2V ⇒ Vo = 2.5V

Vg

Vo

Vi

Vg

Vo

Vi

For nMOS,

max(Vo) = Vg-Vtn

For pMOS,

min(Vo) = Vg+|Vtp|
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Switch-Level Boolean Logic
• Logic gates are created by using sets of controlled switches

• Characteristics of an assert-high switch

– y = x • A,  i.e. y = x iff A = 1 (iff=if and only if)

Series switches ⇒ AND function Parallel switches ⇒ OR function

nMOS acts like an

assert-high switch
=?
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Switch-Level Boolean Logic
• Characteristics of an assert-low switch

– y = x • A,  i.e. y = x if A = 0

Series assert-low switches ⇒ ?

NOR

Remember This??

DeMorgan relations

a • b = a + b,    a + b = a • b
a=1 ⇒ SW1 closed, SW2 open ⇒ y=0 = a

a=0 ⇒ SW1 open, SW2 closed ⇒ y=1 = a

NOT function, combining assert-

high and assert-low switches

y=x y=?
pMOS acts like an

assert-low switch

a b

error in figure 2.5
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CMOS “Push-Pull” Logic
• CMOS Push-Pull Networks

– pMOS
• “on” when input is low
• pushes output high

– nMOS
• “on” when input is high
• pulls output low

pMOS

nMOS

- only one logic network (p or n) is required to produce (1/2-) the logic function???

- but the complementary set allows the “load” to be turned off for zero static power 
dissipation

pMOS

nMOS

assert-low
logic

inputs output

assert-high
logic

VSS = ground
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Review: Basic Transistor Operation

CMOS Circuit Basics

• nMOS

– 0 in = 0 out

– VDD in = VDD-Vtn out

– strong ‘0’, weak ‘1’

• pMOS

– VDD in = VDD out

– 0 in = |Vtp| out

– strong ‘1’, weak ‘0’

assert-low
logic

inputs output

assert-high
logic nMOS

  Vgs > Vtn = on+
Vgs

-

Vin
gate

drain

source

Vin

+
Vsg

-

gate

source

drain

pMOS
  Vsg > |Vtp| = on
  Vsg = VDD - Vin

nMOS

pMOS
Vin

VDD
pMOS

nMOS

Vtn

on

off

off

on

+
Vgs=Vtn

-0 V VDD

VDD VDD

Vy = 0 V Vy =
VDD-Vtn

-
Vsg=|Vtp|

+VDD 0 V

0 V 0 V

Vy = VDD Vy = |Vtp|

CMOS Pass Characteristics

nMOS

pMOS

‘source’ is at lowest potential (nMOS) and highest potential (pMOS)

VDD-|Vtp|

Vg=

Vin Vout

?

0

0

1

Vg=

Vin Vout

1

?

0

1

off = open

on = closed

on = closed

off = open
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Review: Switch-Level Boolean Logic

• assert-high switch

– y = x • A,  i.e. y = x iff A = 1

– series = AND

– parallel = OR

• assert-low switch

– y = x • A,  i.e. y = x if A = 0

– series = NOR

– parallel = NAND

a b

=x
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Creating Logic Gates in CMOS
• All standard Boolean logic functions (INV, NAND, OR, etc.) can be 

produced in CMOS push-pull circuits.

• Rules for constructing logic gates using CMOS
– use a complementary nMOS/pMOS pair for each input

– connect the output to VDD through pMOS txs

– connect the output to ground through nMOS txs

– ensure the output is always either high or low

• CMOS produces “inverting” logic
– CMOS gates are based on the inverter

– outputs are always inverted logic functions
e.g., NOR, NAND rather than OR, AND

• Logic Properties

assert-low
logic

inputs output

assert-high
logic nMOS

pMOS

Useful Logic Properties 

1 + x = 1    0 + x = x 

1 ⋅ x = x   0 ⋅ x = 0 

x + x’ = 1    x ⋅ x’ = 0 

a ⋅ a = a    a + a = a 

ab + ac = a (b+c) 

DeMorgan’s Rules

(a ⋅ b)’ = a’ + b’

(a + b)’ = a’ ⋅ b’

Properties which can be proven

(a+b)(a+c) = a+bc

a + a'b = a + b 
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• Inverter Symbol

• Inverter Truth Table

• Inverter Function
• toggle binary logic of a signal

• Inverter Switch Operation

CMOS Inverter

+
Vgs

-

VoutVin

pMOS

nMOS

+
Vsg

-

=VDD
Vin=VDD

x y

= Vin

x y

0

1

1

0

= x

input low � output high

nMOS off/open

pMOS on/closed

• CMOS Inverter Schematic

input high � output low

nMOS on/closed

pMOS off/open

pMOS “on”

� output high (1)
nMOS “on”

� output low (0)
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nMOS Logic Gates
• Study nMOS logic first, more simple than CMOS

• nMOS Logic
– assume a resistive load to VDD

– nMOS switches pull output low based on inputs

c = a+b
c = ab

nMOS Inverter

(a) nMOS is off

� output is high (1)

(b) nMOS is on

� output is low (0)

nMOS NOR nMOS NAND

• parallel switches = OR function

• nMOS pulls low (NOTs the output)

• series switches = AND function

• nMOS pulls low (NOTs the output)
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CMOS NOR Gate

• NOR Symbol

• Karnaugh map

x y

0

0

1

1

0

1

0

1

x+y

• NOR Truth Table

x

y
x + y 1

0

0

0

y   0       1
x

0

1

1      0

0      0

g(x,y) = x • y • 1 + x • 0 + y • 0

• construct Sum of Products equation with all terms

• each term represents a MOSFET path to the 
output

• ‘1’ terms are connected to VDD via pMOS

• ‘0’ terms are connected to ground via nMOS
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CMOS NOR Gate

• Important Points
– series-parallel arrangement

• when nMOS in series, pMOS in parallel, and visa versa

• true for all CMOS logic gates

• allows us to construct more complex logic functions

• CMOS NOR Schematic

• output is LOW if x OR y is true

• parallel nMOS

• output is HIGH when x AND y are false

• series pMOS

g(x,y) = x • y • 1 + x • 0 + y • 0

x

x

y

g(x,y) = x + y
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CMOS NAND Gate
• NAND Symbol

• CMOS Schematic

x y

0

0

1

1

0

1

0

1

x•y

• Truth Table

x

y
x • y 1

1

1

0

y   0       1
x

0

1

1      1

1      0

g(x,y) = (x•y•1) + (x•y•1) + (x•y•1) 

(x • y • 0)

• K-map

• output is LOW if x AND y are true

• series nMOS

• output is HIGH when x OR y is false

• parallel pMOS

x

x
y

g(x,y) = x y

. .0 .1 .1x y x y= + +
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3-Input Gates

• NOR3

• NAND3

x
y
z

x+y+z
x

y

x y

z

g(x,y) = x+y+z

• Alternate Schematic
• what function?

• note shared gate inputs
• is input order important?

• in series, parallel, both?

• schematic resembles how the 
circuit will look in physical layout

x
y
z

x y z

x y

y

x

z

g(x,y) = x y z
x y z
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Review: CMOS NAND/NOR Gates

• NOR Schematic

• output is LOW if x AND y are true

• series nMOS

• output is HIGH when x OR y is false

• parallel pMOS

x

x
y

g(x,y) = x y

x

x

y

g(x,y) = x + y

• NAND Schematic

• output is LOW if x OR y is true

• parallel nMOS

• output is HIGH when x AND y are false

• series pMOS
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Complex Combinational Logic

• General logic functions
– for example

• How do we construct the CMOS gate?
– use DeMorgan principles to modify expression

• construct nMOS and pMOS networks

– use Structured Logic
• AOI (AND OR INV)

• OAI (OR AND INV)

f = a • (b + c),      f = (d • e) + a • (b + c)

a • b = a + b a + b = a • b
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Using DeMorgan

• DeMorgan Relations
– NAND-OR rule

• bubble pushing illustration

• bubbles = inversions

– NOR-AND rule a + b = a • b

x

y

equivalent
to

x

y x + yx  y

a • b = a + b 

x

y

equivalent
to

x

y
x + y

x  y

• pMOS and bubble pushing
– Parallel-connected pMOS

• assert-low OR

• creates NAND function

– Series-connected pMOS

• assert-low AND

• creates NOR function

x
y

x + yyx

g(x,y) = x + y = x y

x x

y

x   y

y

g(x,y) = x  y = x + y

to implement pMOS this way, must push all bubbles

to the inputs and remove all NAND/NOR output bubbles
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Rules for Constructing CMOS Gates

• Given a logic function 

F = f(a, b, c)

• Reduce (using DeMorgan) to eliminate inverted operations

– inverted variables are OK, but not operations (NAND, NOR)

• Form pMOS network by complementing the inputs

Fp = f(a,  b,  c)

• Form the nMOS network by complementing the output

Fn = f(a, b, c) = F

• Construct Fn and Fp using AND/OR series/parallel 

MOSFET structures

– series = AND, parallel = OR
x

x
y

g(x,y) = x y

The Mathematical Method

EXAMPLE:

F = ab ⇒

Fp = a  b = a+b; OR/parallel

Fn = ab = ab; AND/series
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CMOS Combinational Logic Example

• Construct a CMOS logic gate to implement the function: 
F = a • (b + c)

• pMOS
– Apply DeMorgan expansions

F = a + (b + c)

F = a + ( b • c )

– Invert inputs for pMOS
Fp = a + (b • c)

– Resulting Schematic

a
F

b

c

• nMOS
– Invert output for nMOS

Fn = a • (b + c)

– Apply DeMorgan
none needed

– Resulting Schematic

a

b c

F=a(b+c)

a

a

b

b

c

c

F=a(b+c)
a b

c

F=a(b+c)

14 transistors (cascaded gates)

6 transistors

(CMOS)
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Structured Logic
• Recall CMOS is inherently Inverting logic

• Can use structured circuits to implement general logic 
functions

• AOI: implements logic function in the order
AND, OR, NOT (Invert)

– Example: F = a • b + c • d
• operation order: i) a AND b, c AND d, ii) (ab) OR (cd), iii) NOT

– Inverted Sum-of-Products (SOP) form

• OAI: implements logic function in the order
OR, AND, NOT (Invert)

– Example: G = (x+y) • (z+w)
• operation order: i) x OR y, z OR w, ii) (x+y) AND (z+w), iii) NOT

– Inverted Product-of-Sums (POS) form

• Use a structured CMOS array to realize such functions
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AOI/OAI nMOS Circuits

• nMOS AOI structure
– series txs in parallel

• nMOS OAI structure
– series of parallel txs

F = a • b + c • d

X
X

error in textbook Figure 2.45

b

e

F = (a +e) • (b +f) 
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AOI/OAI pMOS Circuits

• pMOS AOI structure
– series of parallel txs

– opposite of nMOS
(series/parallel)

Complete CMOS 
AOI/OAI circuits

• pMOS OAI structure
– series txs in parallel

– opposite of nMOS
(series/parallel)



Lecture Notes Page 2.40ECE 410, Prof. F. Salem

Implementing Logic in CMOS
• Reducing Logic Functions

– fewest operations ⇒ fewest txs
– minimized function to eliminate txs
– Example:  x y + x z + x v  =  x (y + z + v)

• Suggested approach to implement a CMOS logic function
– create nMOS network

• invert output
• reduce function, use DeMorgan to eliminate NANDs/NORs
• implement using series for AND and parallel for OR

– create pMOS network
• complement each operation in nMOS network

– i.e. make parallel into series and visa versa

5 operations: 

3 AND, 2 OR

3 operations: 

1 AND, 2 OR

# txs = # txs = 
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CMOS Logic Example

• Construct the function below in CMOS
F = a + b • (c + d); remember AND operations occur before OR

Fn = a + b • (c + d)

• nMOS
– Group 2: c & d in parallel

– Group 1: b in series with G2

– Group 3: a parallel to G1/G2

• pMOS
– Group 2: c & d in series

– Group 1: b parallel to G2

– Group 3: a in series with G1/G2

• Circuit has an OAOI organization (AOI with extra OR)
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Another Combinational Logic Example

• Construct a CMOS logic gate which implements the 
function: 

F = a • (b + c)

• pMOS
– Apply DeMorgan expansions

none needed

– Invert inputs for pMOS
Fp = a • (b + c)

– Resulting Schematic ?

• nMOS
– Invert output for nMOS

Fn = a • (b + c)

– Apply DeMorgan

Fn = a + (b+c )

Fn = a + (b • c)

– Resulting Schematic ?
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Yet Another Combinational Logic Example
• Implement the function below by constructing the nMOS network 

and complementing operations for the pMOS: 

F = a • b • (a + c)

• nMOS
– Invert Output

• Fn = a • b • (a + c) = a • b + (a + c)

– Eliminate NANDs and NORs

• Fn = a • b + ( a • c)

– Reduce Function

• Fn = a • (b + c)

– Resulting Schematic ?
– Complement operations for pMOS

• Fp = a + (b • c)

a

a

b

b

c

c

F=a b (a+c)
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XOR and XNOR

• Exclusive-OR (XOR)
– a ⊕ b = a • b + a • b

– not AOI form

• Exclusive-NOR
– a ⊕ b = a • b + a • b

– inverse of XOR

• XOR/XNOR in AOI form

– XOR: a ⊕ b = a • b + a • b, formed by complementing XNOR above

– XNOR: a ⊕ b = a • b + a • b, formed by complementing XOR

thus, interchanging a and a (or b and b) converts from XOR to XNOR
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XOR and XNOR AOI Schematic

a

–XOR: a ⊕ b = a • b + a • b

–XNOR: a ⊕ b = a • b + a • b

a

b

a

b

note: see textbook, figure 2.57
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CMOS Transmission Gates

• Function
– gated switch, capable of passing both ‘1’ and ‘0’

• Formed by a parallel nMOS and pMOS tx

• Controlled by gate select signals, s and s
– if s = 1, y = x, switch is closed, txs are on

– if s = 0, y = unknown (high impedance), 

switch open, txs off

schematic symbol

recall: pMOS passes a good ‘1’ 

and nMOS passes a good ‘0’

y = x s, for s=1
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Transmission Gate Logic Functions

• TG circuits used extensively in CMOS
– good switch, can pass full range of voltage (VDD-ground)

• 2-to-1 MUX using TGs

F = Po • s + P1 • s



Lecture Notes Page 2.48ECE 410, Prof. F. Salem

More TG Functions

• TG XOR and XNOR Gates

• Using TGs instead of

“static CMOS”
– TG OR gate

f = a + a b

f = a + b= a b, a = 1

= a, a = 1

a ⊕ b = a • b + a • b

a ⊕ b = a • b + a • b

= a b, b = 1

= a b, b = 1

= a b, b = 1

= a b, b = 1
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Figure 2.64  (p. 59)
An XNOR gate that uses both TGs and FETs.
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Figure 2.65  (p. 60)
Complementary clocking signals.
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Figure 2.66  (p. 61)
Behavior of a clocked TG.
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Figure 2.67  (p. 61)
Data synchronization using transmission gates.
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Figure 2.68  (p. 62)
Block-level system timing diagram.
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Figure 2.69  (p. 62)
Control of binary words using clocking planes.


