Stick Diagrams

- **Simplified NAND Layout**
 - Metal supply rails: blue
 - n and p Active: green
 - Poly gates: red
 - Metal connections: supply, outputs
 - Contacts: black X
 - N-Well (optional): dashed rectangle

- **Simplified NOR Layout**

![Simplified NAND Layout Diagram](image)

![Simplified NOR Layout Diagram](image)
Overview

- We previously covered layouts of basic logic functions like NAND and NOR
- We’ve extended our discussion to the physical layouts of complex logic gates
- How can we use these kinds of designs to implement more complex functions?
The Cell Concept

- "Primitive" cells, polygon-level
 - create "cell library" of basic functions
- Expanding library with more complex cells
 - primitive library cells added as to higher level cells to create more complex logic functions
 - the instantiated (added) cell is called an "instance"

Each physical design file is called a "cell"
Layout Cell Definitions

- **Cell Pitch** = Height of standard cells measured between VDD & GND rails
 - A: 410 lab definition
 - top of VDD to bottom of GND
 - B: interior size, without power rails
 - C: textbook definition
 - middle of GND to middle of VDD

- **Cell Boundary**
 - max extension of any layer (except nwell)
 - set boundary so that cells can be placed side-by-side without any rule violations
 - extend power rails 1.5\(\lambda\) (or 2\(\lambda\) to be safe) beyond any active/poly/metal layers
 - extend n-well to cell boundary (or beyond) to avoid breaks in n-well

![Diagram](image)
Hierarchical Design Concepts

Building Complex Functions
Example:
\[f = (\overline{a} \cdot b) \]

Final Chip
- flatten all cells to create one level of polygons
- allows masks to be made for each layout layer
- removes hierarchy

IMPORTANT:
Don’t flatten your cells! There are other ways to see lower level cells instantiated within a higher level cell.
Cell Pitch

- All cells should be formed within the standard cell pitch
 - pitch (cell height) set by primitives
 - non-standard cells complicate higher level layout
 - how do you layout 20+ transistors?

- Wide Cells
 - general rule: make cell as wide as necessary to maintain pitch

- Can snap cells together
 - Cells must have the same size (pitch) along connecting edge
 - Reduces wiring, increases density

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Application of pitch matched cells: Microprocessor datapath bitslices
Double Pitch Cells

- non-standard approach, only for full custom designs
- form cell with height 2 x pitch
- internal power pass-through
- “Weinberger Image Array”
- ‘Flipped’ cells every other row
Pitch selection tradeoffs

- **Horizontal Tx** (W runs vertically)
 - can increase tx W with fixed pitch
 - cells short & wide

- **Vertical Tx** (W runs horizontally)
 - pitch sets max tx W
 - cells taller & narrow
 - Often best packing density – 2 active region design methodology

(a) Horizontal FETs (b) Vertical FETs
Wiring pitch
matched cell slices together

- For simplicity it is best to keep each metal layer more or less in a single direction.
- Metal 1, like the VDD and GND rails runs horizontal
- Metal 2 connects cells and signals together vertically
NAND/NOR Layout Alternatives

- **vertical transistors**
 - for smaller pitch (height) and wider cell
- **large horizontal transistors**
 - for larger pitch (height) and narrower cell
Hierarchical Design

- Start with **Primitives**
 - basic transistor-level gates/functions
 - optimize speed, power and layout size
- Build larger cells from primitives
 - layout with instances of primitives
 - add routing
- Build even larger cells
 - layout with instances of lower level cells
 - add routing
- Repeat for necessary levels of hierarchy until Final Chip

Primitives must be done using **custom** techniques, but higher level layout can use automated (place-and-route) CAD tools.

Advantages of Hierarchical Design
- allow layout optimization within each cell
- eases layout effort at higher level
 - higher level layout deal with interconnects rather than tx layout
Overview

- We’ve learned about pitch matching, cells, libraries, and hierarchical design.
- We discussed the tradeoffs between vertical and horizontal transistors, and the factors to consider when selecting cell pitch.
- We saw the advantages of hierarchical design and pitch matched cells, including automation and simplification of design.