Memory Basics

- RAM: Random Access Memory
 - historically defined as memory array with individual bit access
 - refers to memory with both Read and Write capabilities
- ROM: Read Only Memory
 - no capabilities for "online" memory Write operations
 - Write typically requires high voltages or erasing by UV light
- Volatility of Memory
 - volatile memory loses data over time or when power is removed
 - · RAM is volatile
 - non-volatile memory stores date even when power is removed
 - · ROM is non-volatile
- Static vs. Dynamic Memory
 - Static: holds data as long as power is applied (SRAM)
 - Dynamic: will lose data unless refreshed periodically (DRAM)

ECE 331, Prof. A. Mason

Memory Overview.1

SRAM/DRAM Basics

- · SRAM: Static Random Access Memory
 - Static: holds data as long as power is applied
 - Volatile: can not hold data if power is removed
 - 3 Operation States: hold, write, read
 - Basic 6T (6 transistor) SRAM Cell
 - · bistable (cross-coupled) INVs for storage
 - · access transistors MAL & MAR
 - · word line, WL, controls access
 - WL = 0 (hold) = 1 (read/write)
- · DRAM: Dynamic Random Access Memory
 - Dynamic: must be refreshed periodically
 - Volatile: loses data when power is removed
 - 1T DRAM Cell
 - · single access transistor; storage capacitor
 - · control input: word line (WL); data I/O: bit line
- DRAM to SRAM Comparison
 - DRAM is smaller & less expensive per bit
 - SRAM is faster
 - DRAM requires more peripheral circuitry

ROM/PROM Basics

- ROM: Read Only Memory
 - no capabilities for "online" memory Write operations
 - data programmed
 - during fabrication: ROMwith high voltages: PROM
 - · by control logic: PLA
 - Non-volatile: data stored even when power is removed
- PROM: Programmable Read Only Memory
 - programmable by user -using special program tools/modes
 - · read only memory -during normal use
 - · non-volatile
 - Read Operation
 - · like any ROM: address bits select output bit combinations
 - Write Operation
 - typically requires high voltage (~15V) control inputs to set data
 stores charge to floating gate (see figure) to set to Hi or Low
 - Erase Operation
 - · to change data
 - EPROM: erasable PROM: uses UV light to reset all bits
 - EEPROM: electrically-erasable PROM, erase with control voltage

ECE 331, Prof. A. Mason

Memory Overview.3

EPROM device

structure

Comparison of Memory Types

- DRAM
 - very high density → cheap data cache in computers
 - must be periodically refreshed → slower than SRAM
 - volatile; no good for program (long term) storage
- SRAM (basically a Latch)
 - fastest type of memory
 - low density → more expensive
 - · generally used in small amounts (L2 cache) or expensive servers
- EEPROM
 - slow/complex to write → not good for fast cache
 - non-volatile; best choice for program memory
- ROM
 - hardware coded data; rarely used except for bootup code
- Register (flip flop)
 - functionally similar to SRAM but less dense (and thus more expensive)
 - reserved for data manipulation applications

Memory Arrays

- N x n array of 1-bit cells
 - n = byte "width"; 8, 16, 32, etc.
 - N = number of bytes = "length"
 - m = number of address bits
 - $max N = 2^m$
- Array I/O
 - data (in and out)
 - D_{n-1} D₀
 - address
 - A_{m-1} A₀
 - control
 - · varies with design
 - WE = write enable (assert low)
 - WE=1=read, WE=0=write
 - En = block enable (assert low)
 - used as chip enable (CE) for an SRAM chip

1k × 8 RAM \rightarrow 10 addr lines, 8-bit bytes 2¹⁰ = 1k (1024) mem locations = length width = 8-bit, size = 1k-byte, 8k-bits

ECE 410, Prof. A. Mason

Memory Overview.5

Memory Array Addressing

- Standard Memory Addressing Scheme
 - m address bits are divided into x row bits and y column bits (x+y=m)
 - address bits are encoded so that $2^m = N$
 - · array physically organized with both vertical and horizontal stacks of bytes

ECE 410, Prof. A. Mason

Memory Overview.6

Typical Memory Chip

- · Data
 - x-bits in parallel, typically x = 8, 16
- Address signals
 - m address signals \rightarrow M=2^m addresses
- · Control signals
 - /WE: write enable when activated, values on data lines are written to specified address
 - /OE: output enable data at specified location placed on data pins of memory chip, data lines connected to data bus using tristate outputs
 - /CS: chip select selects a specific chip in an array of memory chips
- · Connection to HC12 ----→

Memory Expansion expanding memory length

Memory Expansion expanding memory width

Memory Overview.9

Memory Expansion expanding memory length and width

