Memory Basics

- RAM: Random Access Memory
- historically defined as memory array with individual bit access
- refers to memory with both Read and Write capabilities
- ROM: Read Only Memory
- no capabilities for "online" memory Write operations
- Write typically requires high voltages or erasing by UV light
- Volatility of Memory
- volatile memory loses data over time or when power is removed
- RAM is volatile
- non-volatile memory stores date even when power is removed
- ROM is non-volatile
- Static vs. Dynamic Memory
- Static: holds data as long as power is applied (SRAM)
- Dynamic: will lose data unless refreshed periodically (DRAM)

SRAM/DRAM Basics

- SRAM: Static Random Access Memory
- Static: holds data as long as power is applied
- Volatile: can not hold data if power is removed
- 3 Operation States: hold, write, read
- Basic 6T (6 transistor) SRAM Cell
- bistable (cross-coupled) INVs for storage
- access transistors MAL \& MAR
- word line, WL, controls access

- WL = 0 (hold) = 1 (read/write)
- DRAM: Dynamic Random Access Memory
- Dynamic: must be refreshed periodically
- Volatile: loses data when power is removed
- 1 T DRAM Cell
- single access transistor; storage capacitor
- control input: word line (WL); data I/O: bit line

DRAM to SRAM Comparison

- DRAM is smaller \& less expensive per bit
- SRAM is faster
- DRAM requires more peripheral circuitry

ROM/PROM Basics

- ROM: Read Only Memory
- no capabilities for "online" memory Write operations
- data programmed
- during fabrication: ROM
- with high voltages: PROM
- by control logic: PLA
- Non-volatile: data stored even when power is removed
- PROM: Programmable Read Only Memory
- programmable by user -using special program tools/modes
- read only memory -during normal use
- non-volatile
- Read Operation
- like any ROM: address bits select output bit combinations
- Write Operation

EPROM device structure

- typically requires high voltage ($\sim 15 \mathrm{~V}$) control inputs to set data - stores charge to floating gate (see figure) to set to Hi or Low
- Erase Operation
- to change data
- EPROM: erasable PROM: uses UV light to reset all bits
- EEPROM: electrically-erasable PROM, erase with control voltage

Comparison of Memory Types

- DRAM
- very high density \rightarrow cheap data cache in computers
- must be periodically refreshed \rightarrow slower than SRAM
- volatile; no good for program (long term) storage
- SRAM (basically a Latch)
- fastest type of memory
- low density \rightarrow more expensive
- generally used in small amounts (L2 cache) or expensive servers
- EEPROM
- slow/complex to write \rightarrow not good for fast cache
- non-volatile; best choice for program memory
- ROM
- hardware coded data; rarely used except for bootup code
- Register (flip flop)
- functionally similar to SRAM but less dense (and thus more expensive)
- reserved for data manipulation applications

Memory Arrays

- $N \times n$ array of 1-bit cells
- $n=$ byte "width"; $8,16,32$, etc.
- $N=$ number of bytes = "length"
- $m=$ number of address bits
- $\max \mathrm{N}=2^{\mathrm{m}}$
- Array I/O
- data (in and out)
- $D_{n-1}-D_{0}$
- address
- $A_{m-1}-A_{0}$
- control
- varies with design
- WE = write enable (assert low)
- WE=1=read, WE=0=write
- En = block enable (assert low)
- used as chip enable (CE) for an SRAM chip

Memory Array Addressing

- Standard Memory Addressing Scheme
- m address bits are divided into x row bits and y column bits ($x+y=m$)
- address bits are encoded so that $2^{m}=\mathrm{N}$
- array physically organized with both vertical and horizontal stacks of bytes

Typical Memory Chip

- Data

- x-bits in parallel, typically $x=8,16$
- Address signals
- m address signals $\rightarrow M=2^{m}$ addresses
- Control signals
- /WE: write enable - when activated, values on data lines are written to specified address
- IOE: output enable - data at specified location placed on data pins of memory chip, data lines connected to data bus using tristate outputs
- /CS: chip select - selects a specific chip in an array of memory chips
- Connection to HC12 ------

Memory Expansion expanding memory length

Memory Overview. 9

Memory Expansion expanding memory length and width

