AREAS

CHEMICAL and BIOMOLECULAR
- Bulk and Fine Chemicals
- Consumer Products
- Biotechnology and Pharmaceuticals
- Electronics
- Environmental Safety and Health
- Fuels and Energy Conversion
- Materials
- Process Design

EMPLOYERS

Private and national research laboratories

Industries including:
- Agricultural chemicals, industrial bulk and fine chemicals, plastics, biotechnology, pharmaceutical, cosmetics, textiles, petroleum, food processing, energy, environmental, automotive, pulp and paper, rubber and rubber products, electronics, consumer products

Federal government:
- Department of Energy
- Environmental Protection Agency
- Nuclear Regulatory Commission
- Department of Agriculture

STRATEGIES

Discipline combines chemistry, physics, biology and engineering to solve problems involving the use or production of chemicals and biological systems to develop new materials and processes and to increase efficiency and lower cost.

- Pursue a strong foundation in fundamentals in lower division classes as well as specialized knowledge for specific career opportunities in upper division classes.
- Develop exceptional communication and interpersonal skills for work on multidisciplinary teams. Attention to detail is crucial.
- Pursue experimental design, data interpretation and problem solving competence through coursework and research with professors.
- Seek internship or co-op experiences in the chemical engineering field.
- Join professional associations such as American Institute of Chemical Engineers to maintain current knowledge of opportunities in the field.
- Prepare for professional license via review classes.