

A new anaerobic digestion effluent utilization system integrating electrocoagulation and algal accumulation

Zhiguo Liu, Wei Liao, Yan (Susie) Liu*

Department of Biosystems & Agricultural Engineering Michigan State University

July 16th, 2014

Background – Electrocoagulation (EC)

Figure 1. Electrocoagulation mechanism

- Electrocoagulation (EC) is basically an electrophoreticoriented coagulation technology;
- Widely utilized in treating wastewater from pulp and paper, mining and metal, food and oil industries.

Background - Anaerobic Digestion (AD)

ANAEROBIC DIGESTER

(http://www.re-sourcerecycling.com/anaerobic-digestion)

- Anaerobic Digestion (AD) is a practical and traditional approach of nutrients recycling and further utilization from various organic wastes;
- Biogas (~60% CH4, ~40% CO2, 0.0001-1% H2S, etc) for energy generation, while nutrients-abundant effluent not fully utilized and properly processed.

AD effluent

Anaerobic digester

EC treatment

EC treatment unit in lab-scale

Clean water Nutritious sediments

Separation of liquid and solid after EC treatment

Materials and methods

Half million gallon CSTR anaerobic digester in ADREC, located in south campus of Michigan State University

Power supply and electrodes for EC 2 pairs of electrodes in parallel connection

3L EC column reactor

Algae culture instruments

AD effluent and EC treatment design

Table 1. Basic profile of AD effluent

	Manure AD effluent
рН	7.5-8.0
AD feed	66% Dairy manure ;33% food waste
CH4 %	55%-60%
TS	~ 0.5 %
TN	~300mg/L
TP	~ 140mg/L
COD	~2100mg/L

^{*}Original AD effluent diluted 10 times before testing

Table 2. EC treatment design

	_	
	Leve 1	Label
	32.3	1A
Current density (mA cm-2)	48.4	1.5A
	64.5	2A
Time (h)	0.5	0.5h
Time (h)	1	1h

Results: Nutrients removal by EC – COD & Total nitrogen (

Poor TN removal; ~200 mg L-1 remaining.

Nitrogen removal – integration of algae culture

- 60 80% of residue nitrogen is in form of NH4-N;
- NH4-N could be readily uptake and consumed by algae;
- Effluent solution's transparency was largely improved;

AD effluent

EC treatment

Clean water Nutritious sediments

Algae culture

Nitrogen removal – pre-selection of algae strains

Scale-up: evaluation of column EC reactor

Column EC reactor design – key parameters

Table 3. Comparison of EC parameters of column and cubic reactor

	Column	Cubic	
Current density (mA cm-2)	13.2	64.5	_
Surface area (cm2) 379.		62.0	_
S/V (cm-1)	0.124	0.124	4
Volume (L)	3	umm and cubic re 0.5	actor
	Column	Cubic	
Volume (L)	3	0.5	
Time (min)	90	60	
Initial TS %	~ 0.9	~0.9	Ī

Performance of column EC reactor on diluted AD effluent artiment of Biosystems and Agricultural Engineering

Table 5. Column EC reactor setup to collect effluent for algae culture

Profile	Level
Initial total solid % (w/w)	0.5
Current (A)	5
Current density (mA/cm2)	13.2
Retention time (min)	10

Algae culture with EC effluent

- Nitrogen removal and phosphorous consumption

Algae culture with EC effluent

Algal biomass composition analysis

- group 5% CO2 group was processed for composition analysis for its relative abundant biomass;
- Lipid contents for 46 and 94 hours' samples are missing due to insufficient amount of biomass;
- Protein contents were estimated by total nitrogen, with nitrogen to protein conversion factor assumed as 6.25;
- Carbohydrate contents were calculated based on reducing sugar, estimated by 3,5-dinitrosalicylic acid (DNS) method;
- Lipids were extracted based on method described by Ruan, et al. 2013.
- Protein content was less than reported, which might be due to insufficient hydrolysis by diluted acid.

Conclusions

- Electrocoagulation (EC) is efficient in nutrients removal except total nitrogen (TN);
- Chlorella vulgaris shows better capability in biomass accumulation and further nitrogen removal from EC effluent;
- Scale-up column EC reactor is more energy efficient than small scale cubic EC reactor;
- Extra carbon source is necessary in biomass accumulation and efficient nitrogen removal;
- Relative high level of algal biomass could be accumulated without obvious inhibition;

DQY® Agriculture Technology Co. Ltd;

Questions?

Thanks for your attention!