GLASSWORKING

1. Raw Materials
2. Shaping
3. Heat Treatment & Finishing
4. Production Design Consideration

Introduction
- Glass is one of three types of ceramic materials. The other two are traditional and new ceramics.
- A type of ceramics which is Non-crystalline [SiO₂(sand) + other oxides]
- Shaping: melting, casting, pressing and blowing or rolling.
- Glass remain in the glass state even after cooling.
- Typical Processing steps

1. Raw Materials
- The sand is washed and classified according to size (ideal size: 0.1 to 0.6mm).
 - Other ingredients such as soda ash (Na₂O), limestone (CaO), aluminum oxide, potash (K₂O) and other minerals.
 - Recycled glass is added (up to 100%).
- A starting material before melting is called 'charge'.
- Glass-melting furnace: 1500-1600°C typically for 24 to 48 hours.
- Temperature (up) dictates viscosity (down) for shaping.

2. Shaping Processes
- Three Categories
 - Discrete (bottles, jars, plates, light bulbs)
 - Continuous (sheet, plate and tubing)
 - Fiber-making (insulation and fiber optics)
- Shaping Piece ware
 - Casting – melting, solidifying, lapping & polishing
 - Spinning – centrifugal casting
 - Pressing – gob
 - Blowing – press-blow and blow-blow methods

Press-and-blow and Blow-and-blow

Shaping Flat and Tubular Glass
- Rolling of Flat Plate
- Glass Tubes (Danner process)

Float Process
Glass Fibers

- Fibrous glass – insulation
 - Centrifugal Spraying – molten glass in a rotating bowl flows out through small orifices.
- Long continuous filament – for composites and fiber optics

3. Heat Treatment & Finishing

- Annealing – get rid of undesirable internal stresses by heating at 500°C.
- Tempered glass – heated above tempering temperature and the surfaces cooled to induce compress stress on the surface. Shatters into numerous small fragments to take more energy.
- Finishing – grinding, polishing and cutting

SHAPING PROCESSES FOR PLASTICS

1. Properties of Polymer Melts
2. Extrusion
3. Sheet and Film
4. Fiber and Filament
5. Coating Processes
6. Injection Molding
7. Compression & Transfer Molding
8. Blow Molding & Rotational Molding
9. Thermoforming
10. Casting
11. Polymer Form
12. Design Consideration

Introduction

- Unlimited variety of part geometries
- Net Shape
- Less energy
- Lower temperature
- No finishing

1. Properties of Polymer Melts

- Viscosity
 - Newtonian fluid: \(\eta = \frac{\tau}{\gamma} \)
 - \(\eta \) = coefficient of shear viscosity
 - Pseudoplastic fluid: \(k = \frac{\tau}{\gamma^p} \)
- Viscoelasticity
 - Causes die swell
 - Swell ratio, \(S = \frac{D_2}{D_1} \)
- Mold Flow Index (MFI): A measure of flow and viscosity depending on temp. and shear rate
2. Extrusion
- Shaping process for polymers, metals & ceramics.
- A compression process – A material flows through a die orifice to provide long, continuous shaped material.
- Extrudate (extruded product) cut into desirable lengths.
- Equipment
 - Internal Diameter (25-150 mm)
 - L/D ratio ranges from 10 to 30.
 - The extruder screw rotates at about 60 rev/min.
- Feed section
 - Compression section – transforms to liquid
 - Metering section – the melt is homogenized and pressurized.

A simple plate model
Volume drag flow rate (m/s): \(Q_d = 0.5v_d w \)

Analysis of Extrusion
Into the eq. from a plate model
\[Q_e = 0.5\pi^2 D^2 Nd_c \sin A \cos A \]

Back pressure flow (empirical) due to drag flow
\[\dot{Q}_b = \frac{\pi D^2 \sin^2 A}{12 \eta} \left(\frac{dp}{dl} \right) = \frac{\pi D^2 \sin^2 A}{12 \eta L} \]

The resulting flow rate, assuming no leak flow
\[Q_s = Q_e - Q_b = 0.5\pi^2 D^2 Nd_c \sin A \cos A - \frac{\pi D^2 \sin^2 A}{12 \eta L} \]

Design Parameters: \(D, d_c \), and \(A \)
Operating Parameters: \(N, p \) and \(\eta \)

Die Configuration & Defects
- Extruded shape
 - Solid Profiles
 - Hollow Profiles such as tubes
 - Wire and Cable coating (see text)
- Defects
 - Melt fracture
 - Sharkskin – residual stress on surface
 - Bambooning

3. Production of Sheet & Film
- 0.5 mm < Sheet thickness < 12.5 mm
- Film thickness < 0.5 mm
- Continuous & High Production
- Slit-die Extrusion
 - Water Quenching bath
 - Chill roll extrusion
- Blown-film Extrusion (Fig. 13.16)
- Calendering (2.5 m/s)
 - A series of rolls
4. Fiber & Filament Production
- Melt Spinning
- Dry Spinning – polymer in solution and the solvent evaporates

5. Coating Processes
- Wire and Cable coating
- Planar coating
 - Roll
 - Doctor blade
- Contour Coating
 - Dipping or spraying

6. Injection Molding
- Video in class
- Three Mold Types
- The Mold, Injection and Clamping Units
- Shrinkage: \(D_f = D_p + D_s S + D_s S^2 \)
- Defects
 - Short Shot
 - Flashing
 - Sink mark and void
 - Weld line
- Other Types (e.g.: Reaction Injection Molding)

7. Compression & Transfer Molding
- Compression Molding
- Transfer Molding

8. Blow Molding
- Blow Molding – uses air pressure to inflate soft plastic to make a hollow geometry inside a mold cavity.
9. Rotational Blow Molding

- Gravity is used to achieve the hollow form inside a rotating mold.
 - A predetermined amount is loaded
 - Heating and rotating
 - Cooling while rotating
 - The mold opens and the part release.

10. Thermoforming

- A flat thermoplastic is heated and deformed into the desirable shape
 - Forming – Vacuum, Pressure and Mechanical

11. Casting

- Steps
 - Pouring a liquid resin into a mold
 - Filling the cavity
 - Hardening
- Materials: acrylics, polystyrene, polyamides, PVC.
- Slush or shell casting

12. Polymer Foam Processing

- Polymer Foam – a composite of polymer and gas (air, nitrogen and carbon dioxide)
 - Introduction of gas
 - mechanical agitation
 - physical blowing agents
 - chemical blowing agents
 - Depending on the amount of gas and processing, open or closed cells

13. Design Consideration

- General consideration
 - Strength and Stiffness
 - Impact Resistance
 - Service temperature
 - Thermal expansion
 - Degradation
- Extruded Plastics
 - Wall thickness
 - Hollow sections
 - Corners
- Molded Part
 - Economic production quantities
 - Part Complexity
 - Wall thickness: reinforcing ribs
 - Corner radii and Fillet
 - Holes but careful
 - Draft
 - Tolerance

 See Table 13.2