Dew T

1. Know y_i, P
 Calc P_i^{sat}. Assume Raoult’s law for first T, x_i calculation, then calc γ_i at x_i.

2. Adjust T until $\sum_i \frac{y_i P}{\gamma_i P_i^{sat}} = 1$

3. $x_i = \frac{y_i P_{\gamma_i P_i^{sat}}}{}$

4. x_i changed? Yes for first loop pass.

5. Calc γ_i at new x_i

Bubble P

1. Know x_i, T. Calc γ_i, P_i^{sat}

2. $P = x_1 \gamma_1 P_1^{sat} + x_2 \gamma_2 P_2^{sat}$

3. $y_i = \frac{x_i \gamma_i P_i^{sat}}{P} = x_i K_i$

4. $y_T = \sum y_i$

5. $y_T = 1$?
 Yes
 6. Dew T and x_i found
 No
 7. Guess T

Bubble T (choose one)

1. Know x_i, P Guess T (e.g. eq 9.62)

2. Calc γ_i, P_i^{sat}

3. $y_i = \frac{x_i \gamma_i P_i^{sat}}{P} = x_i K_i$

4. $y_T = \sum y_i$

5. $y_T = 1$?
 Yes
 6. Bubble T and x_i found
 No
 7. Guess T

8. Bubble T and x_i found