Summary Of Expansion/Contraction Work For An Ideal Gas In A Closed System By Various Pathways

The work on a mass or molar basis is always calculated by $W_{EC} = -\int_{V_1}^{V_2} PdV$. Using the ideal gas law in the integral permits the work to be calculated.

Isothermal – constant temperature, $P = RT/V$, plug into integral,

$$W_{EC} = -\int_{V_i}^{V_f} PdV = -\int_{V_i}^{V_f} (RT/V)dV = -RT\int_{V_i}^{V_f} (1/V)dV = -RT \ln(V_f/V_i)$$

(ig)

Isochoric – constant volume.

$$W_{EC} = -\int_{V_i}^{V_f} PdV = 0$$

Isobaric – constant pressure

$$W_{EC} = -\int_{V_i}^{V_f} PdV = -P(V_f-V_i)$$

Adiabatic – $Q = 0$

$$W_{EC} = -\int_{V_i}^{V_f} PdV$$, but easier to use energy balance, $\Delta U = W$.

For ideal gas, use example 2.9 to find state properties like temperature and pressure changes, relate these to ΔU. However, recognize that the result is limited to ideal gases.

For an ideal gas, $\Delta U = \int C_v dT = W$

(ig)

The constraint of an ideal gas is necessary for the above equation because U depends on P and density for real fluids in addition to temperature, so the change in U cannot be calculated by only T. More complex relations will be introduced in Chapter 5, 6, and 7 for calculation of U for real fluids as a function of P and density.

Summary of ΔU and ΔH for ideal gases

Ideal gas U and H depend on only temperature. Changing the intermolecular separation (density or pressure) does not have an energetic effect because there is no potential energy between particles.

$$\Delta U = \int C_v dT, \quad \Delta H = \int C_p dT$$

(ig)

For real fluids, consult section 2.10. More complex relations will be introduced in Chapter 5, 6, and 7 for calculation of U and H for real fluids as a function of P and density.