ON PROPER ORTHOGONAL COORDINATES
AS INDICATORS OF MODAL ACTIVITY

B. F. FEENY
Michigan State University
Department of Mechanical Engineering
East Lansing, MI 48824 USA

Abstract
Proper orthogonal decomposition (POD) is applied for examining modal activity. The extraction of proper orthogonal modal coordinates (POCs) is outlined, and their relation to proper orthogonal values (POVs) is noted. A criterion for determining modal activity based on POVs above the noise floor, drawn from singular system analysis, is proposed for POD. The ideas are illustrated on a cantilevered beam experiment. The displacement ensembles are obtained by processing six strain measurements. Coherent proper orthogonal modes (POMs) and POVs above the noise floor together confirm that six active modes are detected in the system. The distribution of modal components in POCs is discussed. The characteristics of the POMs, POVs and POCs are then examined in the presence of added noise.

1. INTRODUCTION

This paper is about the application of proper orthogonal decomposition (POD) for obtaining information about the active or significant states of a vibration system.

Proper orthogonal decomposition, also known as Karhunen-Loève decomposition and principal component analysis, is a statistical method of finding optimal distributions of energy from a set of measurement histories. POD has become a standard tool in turbulence studies since being applied by Lumley [1]. POD provides a measure of spatial coherence [1, 2, 3], and can be used to estimate the active dimension of a dynamical system [3, 4]. It is used to produce empirical modes for modal reduction of nonlinear systems [5, 6, 7, 8, 9, 10], and can aid in system identification [11, 12] and in some cases modal analysis [13, 14].

POD is a statistical method applied to the correlation matrix derived from a set of measurement histories. POD results in a set of proper orthogonal modes (POMs) and proper orthogonal values (POVs). POMs are the optimal distributions of signal power, and POVs indicate the amount of signal power associated with corresponding POMs. Proper orthogonal modal coordinates (POCs) can be defined by using POMs as basis functions. As such, the POVs turn out to be the mean squared values of the corresponding POCs, and the POVs can thus be used to gage the significance of activity associated with the corresponding POMs.

Using the POVs, the POMs can be ranked in descending order of signal power. The cumulative power then is the truncated sum of the POVs. It has been customary to say that the number of significant, or active, modes are those of largest power that contain, say, 99% or 99.9% of the total signal power [1, 4, 3, 8, 15]. This is a prescribed criterion. The chosen number varies with the problem at hand and the insight of the researcher.
In this paper, we explore the usage of POCs to assess modal activity. We also discuss the use of the POVs that are above the noise level as indicators of modal significance or activity.

Next, we review the application of POD toward the extraction of modal activity. We follow the discussion with the application of POD to an experimental beam.

2. POD AND MODAL ACTIVITY

In this section, we describe more details about the POD process, as will be applied in this work. We will borrow a criterion for the significance of modal activity from a similar tool, singular system analysis, which will therefore also be summarized.

2.1. Proper Orthogonal Decomposition

Application of POD to structures typically requires sensed dynamical quantities at \(M \) locations within the system. For this discussion, these quantities are taken to be displacements \(x_i(t), x_2(t), \ldots, x_M(t), \) although other states can be used [16, 17]. When the displacements are sampled \(N \) times, we can form displacement-history arrays, such that \(x_i = (x_i(t_1), x_i(t_2), \ldots, x_i(t_N))^T, \) for \(i = 1, 2, \ldots, M. \) (The means are sometimes subtracted from the displacement histories.) In performing the proper orthogonal decomposition, these displacement histories are used to form an \(N \times M \) ensemble matrix,

\[
X = [x_1, x_2, \ldots, x_M].
\]

Each row of \(X \) represents a point in the measurement space at a particular instant in time. The \(M \times M \) correlation matrix \(R = \frac{1}{N}X^T X \) is then formed. Since \(R \) is real and symmetric, its eigenvectors are orthogonal. The eigenvectors \(v \) of \(R \) are the proper orthogonal modes, and the eigenvalues \(\lambda \) are the proper orthogonal values.

The POMs are the principal axes of inertia of the data in the measurement space, and the POVs indicate the mean squared values of the data in the directions of the corresponding POMs [13]. Equivalently, POVs indicate the signal power associated with the corresponding POMs [1, 4].

The dynamics can be decomposed into modal coordinates by using the POMs as basis functions. To this end, we define a proper orthogonal modal matrix \(V = [v_1 \cdots v_M] \). We can define modal coordinates \(q(t) \) with elements \(q_i(t), i = 1, \ldots, M, \) such that \(x(t) = \sum_{i=1}^M q_i(t) v_i = Vq \). As such, the ensemble matrix is \(X = V^T Q \), where \(Q \) is an ensemble of proper modal coordinates (POCs). Thus,

\[
Q = [q_1, q_2, \ldots, q_M],
\]

where \(q_i = (q_i(t_1), q_i(t_2), \ldots, q_i(t_N))^T, \) for \(i = 1, \ldots, M, \) are individual modal coordinate histories. If \(V \) is normalized, then \(V^TV = I \) because of orthonormality. Thus, we can extract the POC histories \(q_i(t) \) from the original ensemble \(X \) via \(Q = VX \). Each modal coordinate represents the dynamics in the axis of a corresponding POM. The mean squared value of this modal coordinate is the associated POV.

We have noted that the POMs are optimal distributions of energy, derived from a statistical method. If the POM accurately depicts a normal mode of the system, then it might be
expected that the associated POC will be dominated by dynamics of the associated normal mode. Indeed, in linear systems with uniform mass distributions (or made so by a coordinate transformation), POMs converge to LNMs [13], approximately in the case of continuous systems [14].

If the POMs are identical to the LNMs, then the POCs \(q_i(t) \) and the true linear normal modal coordinates \(\eta_i(t) \) are identical. Suppose the POMs differ from the LNMs, \(\phi_i \), such that \(v_i = \phi_i + \epsilon_i \). Then \(x(t) = Vq(t) = [\phi_1 + \epsilon_1, \phi_2 + \epsilon_2, \ldots, \phi_M + \epsilon_M]q \). By orthogonality of the POMs, \(q(t) = V^T x(t) \), whence

\[
q_i(t) = \phi_i^T x(t) + \epsilon_i^T x(t) = \eta_i(t) + \epsilon_i^T x(t),
\]

that is if the mass distribution is uniform such that \(\phi_i^T \phi_j = \delta_{ij} \). The error vector \(\epsilon_i \) can be written in terms of linear normal modes by using the expansion theorem [20]: \(\epsilon_i = \sum_{j=1, j\neq i}^{M} d_j \phi_j \). Hence,

\[
q_i(t) = \eta_i(t) + \sum_{j=1, j\neq i}^{M} d_j \eta_j(t).
\]

Thus the proper orthogonal modal coordinate \(q_i(t) \) is polluted by other normal modal coordinates depending on the deviation of the POM \(v_i \) from the LNM \(\phi_i \), as well as the relative strengths of linear normal modal components \(\eta_j(t) \). Small deviations \(d_j \) lead to small impurities in \(q_i(t) \), while large modal coordinate dynamics \(\eta_j \) increase the impurity of \(q_i(t) \).

If the POMs do not represent the LNMs (e.g., if the mass distribution is not uniform [14, 13]), we cannot make a this clear connection between \(q_i(t) \) and \(\eta_i(t) \).

2.2. A Criterion for Modal Significance

We will be looking at the POVs, which are the mean squared values of POCs, and also the POCs themselves, to extract information about modal activity. We will explore a POV-based criterion for dynamical significance based on determining the number of POVs that are above the noise floor. The idea here is that POVs above the noise floor represent mean squared proper orthogonal modal dynamics that have a meaningful deterministic contribution. This criterion draws off of an idea formerly applied to a similar data processing tool, singular system analysis (SSA), which was proposed for putting bounds on the number of active state variables from a single observable [18]. Subsequent studies had shown that conclusions drawn about state activities by using SSA can be erroneous. We argue that the reason for this does not apply to POD.

The application of singular system analysis as presented by Broomhead and King [18] occurs not on an ensemble of distinct measurements, rather on an ensemble of delays of a single sampled observable, \(y(t_j) \), where \(t_j \) are time samples. A phase-space delay reconstruction [21, 22] is performed by forming vectors \(s_j = (y(t_j), y(t_{j+k}), \ldots, y(t_{j+(E-1)k}))^T \), for \(j = 1, 2, \ldots, N \), in the \(E \)-dimensional delay space, where the delay \(k \) and the dimension \(E \) are chosen according to standard methods [23]. The ensemble matrix is then \(S = [s_1, s_2, \ldots, s_N]^T \). From this, the autocorrelation matrix is then \(R = \frac{1}{N} S^T S \). \(R \) has eigenvectors and eigenvalues, which are the singular vectors and squared singular values of \(S \). Again, the eigenvectors are the the principal
axes of inertia of the data in the delay space, and the eigenvalues are the mean squared values of the delay vectors in the directions of the eigenvectors.

The idea proposed originally [18] was to estimate \(E \), and hence the number of delay coordinates needed to describe the data, by first choosing a reconstruction dimension larger than \(E \), and finding the singular values above the noise level. The argument was that the ellipsoid of inertia has only as many significant axes as there are meaningful independent coordinates, which, in the case of phase-space delay reconstructions, are delays of a single observable. The number of significant axes would provide an estimate of \(E \) based on statistics, rather than geometry (i.e. not based on whether trajectories cross). As it turns out, in the scenario of the delay reconstruction, in which the columns of \(\mathbf{S} \) come from delays of the same sampled continuous waveform, an \(\mathbf{S} \) matrix of arbitrary size can have full rank, and so this criterion does not lead to an estimate of the number of independent delay coordinates needed to describe the data [24, 25, 26, 27].

However, in the POD, the columns of \(\mathbf{X} \) come from distinct, and potentially independent, measurements. This is significantly different than SSA. If the various measurements are linearly dependent, we would expect the rank of \(\mathbf{X} \) to be low. So if a system response occurs in few modes, and a greater number of measurements are taken to build the ensemble matrix \(\mathbf{X} \), we would expect \(\mathbf{X} \) to have a low rank. For example, suppose a beam vibrates in one mode, but is measured at several locations. The rank of \(\mathbf{X} \) would be one.

With this in mind, we report findings from an experimental beam.

3. EXPERIMENTS WITH A LINEAR BEAM

3.1. Apparatus and Displacement Measurement

These experiments with a linear beam were originally conducted to test the applicability of POD as a linear modal analysis tool [28]. A cantilevered steel beam of 0.394 m length, 0.012 m width, and 0.00079 m thickness was fixed at one end in a steel clamp. The natural frequencies were found to be 4.5, 27.2, 75.5, 147, 243, and 365 Hz. The theoretical modal frequencies of the Euler-beam model were 4.5, 28.4, 79.4, 156, 257, and 384 Hz.

Six strain-gage pairs were placed along the beam to sense bending strains. The locations of the strain-gage pairs were \(x_1 = 5.27 \times 10^{-3} \) m, \(x_2 = 0.0543 \) m, \(x_3 = 0.1033 \) m, \(x_4 = 0.1523 \) m, \(x_5 = 0.2013 \) m, and \(x_6 = 0.2503 \) m, measured from the clamped end. The strain gages were biased toward the clamp for strain sensitivity, while the desired displacement locations are to be equally spaced from clamp to tip, to satisfy a condition for the approximation of LNMs by POMs [14].

The strains were converted into displacement estimates in the following way. The bending strain in a symmetric beam at a location \(x_i \) is related to the transverse deflection \(y(x, t) \) by

\[
\epsilon(x, t) = \frac{\partial^2 y(x, t)}{\partial x^2} \bigg|_x = x_i,
\]

(3)
where \(c\) is half of the thickness of the beam. If we approximate

\[
y(x, t) \approx \sum_{j=1}^{M} \phi_j(x) u_j(t),
\]

where \(\phi_j(x)\) are basis functions that satisfy the geometric boundary conditions, and \(u_j(t)\) are generalized coordinates. Evaluating \(y(x, t)\) at \(\hat{M}\) distinct locations \(x_k\), we can write

\[
y = \Phi u,
\]

where \(y_k = y(x_k, t)\) are elements of the \(\hat{M}\)-vector \(y\), \(\phi_k = \phi_j(x_k)\) are the elements of \(\hat{M} \times M\) matrix \(\Phi\), \(x_k\) are the desired displacement locations, and \(u_j(t)\) are the elements of \(M\)-vector \(u\).

Using equations (3) and (4), and evaluating at \(M\) strain-gage locations \(x_i\), the vector of measured strains are related to modal coordinates by

\[
\dot{\epsilon} = c \Psi u,
\]

where the measured strains \(\epsilon_i = \epsilon(x_i)\) are the elements of \(\dot{\epsilon}\), and \(\psi_{ij} = \frac{d^2 \phi_j(x)}{dx^2} \bigg|_{x=x_i}\) are the elements of \(M \times M\) matrix \(\Psi\). As such, the generalized coordinates \(u\) can be expressed as

\[
\dot{\epsilon} = \frac{1}{c} \Psi^{-1} \dot{\epsilon}.
\]

Matrix \(\Psi\) is invertible as long as the second derivatives of the linearly independent basis functions remain independent.

Our goal is to take \(M\) strains at measured locations on the beam, and estimate \(\hat{M}\) displacements at some other locations \(x_1, \ldots, x_{\hat{M}}\). Thus the \(M \times M\) matrix \(\Psi\) is constructed based on the \(M\) actual strain-gage positions and \(M\) basis functions, and the \(\hat{M} \times M\) matrix \(\Phi\) is built based on the \(M\) basis functions evaluated at \(\hat{M}\) desired displacement locations. The basis functions chosen were the theoretical normal modes of a cantilevered Euler beam. (While it may seem silly to perform POD when the theoretical modes are known, our purpose is not to identify modes but to illustrate the role of POCs.) The resulting vector of displacements is

\[
y = \frac{1}{c} \Phi \Psi^{-1} \dot{\epsilon}.
\]

In this study, \(M = 6\) and \(\hat{M} = 20\). Therefore, we have 20 displacement histories (approximated via modal truncation) which are linearly dependent. There are at most six independent displacements, which can produce only six meaningful modes. The motivation for using \(\hat{M} > M\) is to "improve" the spatial resolution for modal analysis [28], knowing of course that the resolution is not truly improved, rather the displacements are interpolated across the beam, using the functions \(\phi_j(x)\) as a basis for the interpolation.

3.2. POMs and POVs of the Beam

The beam was excited with a simple impulse, and the ensuing free vibration was monitored. The six strain histories were simultaneously sampled and, due to nuances in the data
acquisition system, recorded in 0.2 second windows which were then concatenated. These strain histories were later post processed according to the above development to produce 20 redundant displacement histories. A total of 800 samples were recorded. As such, the ensemble matrix X was 800 by 20. The correlation matrix R was formed, and the POMs and POVs were extracted.

The POVs are plotted in a logarithmic scale in Figure 1. We know a priori that there are a maximum of six independent modes. Everything beyond six is spurious. This is brought out in the logarithmic plots. The first six POVs are distinct from the spurious set. The spurious POVs are not clearly distinguishable and can be considered as noise. This suggests that there could be six meaningful modes detected in the system response.

If λ_i are the POVs, and Λ is their sum, then in this example $\lambda_1/\Lambda = 0.9928$, $(\lambda_1 + \lambda_2)/\Lambda = 0.999954$, and $(\lambda_1 + \lambda_2 + \lambda_3)/\Lambda = 0.9999991$.

Figure 2 shows the first eight POMs plotted with circles. The first six are representative, at least qualitatively, of the first six linear normal modes of a cantilevered Euler beam, which are plotted with solid lines. The deviation could arise in the spatial resolution of the sensors, the choice of basis functions, or in the deviation of the beam from an ideal cantilevered beam.
Figure 2: The first 8 POMs ordered by descending POVs. The circles indicate the POMs, and the solid lines show the theoretical normal modes.

The clamp is likely to be non-ideal. The next two modes (and indeed the next 12 modes) are not coherent. The structure of the modes, while preserving the clamped boundary condition, is noisy, as the modes are generated from the noise level of the system. None of the theoretical normal modes clearly resemble the seventh and eighth POMs. The conclusion drawn from the POMs is that there are six modes captured in the system response, the maximum we expected. Thus, the POMs and POVs point to the same conclusion.

This example is special because of the clear delineation between deterministic and random modal information, and is therefore illustrative. It is not a contrived example, as the experiment was developed purposefully for modal analysis, and it involves the real situation of having a limited number of sensors.

More typically, there might be enough independent sensors for the POVs to descend into the noise level. To examine this scenario, we added random noise post partum to the displacement data. The POD was then performed. Under such conditions, the logarithms of the POVs had the form of those plotted in Figure 3. There were clearly three POVs above the noise floor. The
POVs are such that $\lambda_1/\Lambda = 0.9927$, $(\lambda_1 + \lambda_2)/\Lambda = 0.99983$, and $(\lambda_1 + \lambda_2 + \lambda_3)/\Lambda = 0.99989$. The first six associated POMs are shown in Figure 4. The first three POMs were well representative of the first three linear normal modes. The subsequent POMs have no correlation with linear normal modes, and do not represent deterministic dynamical properties. As such, three modes are identifiable, consistent with three POVs above the noise floor.

If we consider the percent power criterion, what result would we have? In each case, undoctored and random noise added, according to the 99% criterion, we have one significant mode. According to the 99.9% and 99.99% criteria, we have two and three significant modes (barely four modes in the noisy data). The result is different from the noise level criterion. But the percent power criterion is a prescription, and it holds meaning toward the determination of the number of significant dominant modes. Indeed, this system, if modeled for its large-scale behavior, might aptly be described by one to three modes, depending on what is needed out of the model.

3.3. Proper Orthogonal Coordinates
Figure 4: The first 6 POMs ordered by descending POVs for the case with added random noise. The circles indicate the POMs, and the solid lines show the theoretical normal modes.
Figure 5: The proper modal coordinate histories for the first eight proper orthogonal modes.

Since our data contains 0.2 s windows of continuous sampling, we look at proper orthogonal modal coordinates $q_i(t)$ from $Q = VX$ during a single continuous window, in this case the second 0.2 s of the response.

For the noise-free case the POCs are plotted in Figure 5. The visual impression is that the first six modal coordinate histories are distinct, and that the last two, which are spurious, give no new information in their dynamics. The first two modes seem to be dominated by harmonic components of distinct frequencies.

The fast Fourier transforms of these signals are shown in Figure 6. The first two modes are cleanly dominated by the first two modal frequencies of the beam. The third mode already has a stronger component from the second linear normal mode than from the third linear normal mode, judging by the frequency content. This happens because the third POM is not identical to the third LNM. Looking at the close comparison with theoretical modes in Figure 2, it may be a surprise that the third POC is dominated by the second modal frequency. It means that the contribution of the second normal mode in the third POC, that is $d_{2}^{(3)} \eta_2(t)$, where $d_{2}^{(3)}$ represents the component of the second linear normal in the third POM, is stronger
Figure 6: The Fourier transforms of the proper modal coordinate histories \(q_i(t) \) for the first eight proper orthogonal modes.

than the third normal modal coordinate \(\eta_3(t) \). However, the modal power distribution, i.e. the POVs, suggest that the third frequency pales in comparison to lower modal frequencies. At a glance, the fourth POC does not seem to introduce meaningful information about modal frequencies, while the fifth does, and the sixth again does not. (But this could be a matter of the vertical-axis scale.) It is likely that the six modal frequencies are present, since the six modes were well represented, but that the fifth and sixth frequency components are very small compared to the others. (If we had a longer continuous time record available, we might get more insight from the improved frequency resolution.) In this system, the POMs deviate slightly from the LNM s, and the normal modal components shuffle into the POCs according to equation (2).

The proper orthogonal modal coordinate histories were also examined in the noise-contaminated case. Figure 7 portrays the first four modal histories, which can be compared to the first four modal histories in the noise-free case, in Figure 5. The first two POCs have a clean representation of the respective modal dynamics. The third modal coordinate resembles a noisy version
Figure 7: The proper modal coordinate histories for the first four proper orthogonal modes. In this case there is noise added to the displacement data.

of the noise-free case. The fourth, and the higher modal coordinates not shown, are mainly noise.

The FFTs of these modal signals are shown in Figure 8. The first three show frequency content consistent with the noise-free case. The fourth, and subsequent modal coordinates (not shown), are noisy of similar magnitudes.

Consequently, both the POMs and POVs led to the conclusion that three modes were detectable in the noise-contaminated case.

4. CONCLUSION

In applying POD as a tool for obtaining information about deterministic dynamics, we have looked at two criteria for finding the number of active states or modes. The conventional idea used in structural dynamics is to set a threshold criterion on the signal power, such that modes that account for power up to the threshold are considered significant or meaningful. The threshold is a prescription. Another criterion, investigated here, is to seek signal power above the noise floor.

The noise-floor criterion was applied to the free response of a linear beam. Although some of the modes had very small signal power percentage, the modes represented features of deterministic dynamics. Because of the limited number of sensors, the problem turned out to be clear-cut in the number of detectable modes. However, it provided a useful illustration of the basic ideas employed in the noise-floor criterion. We added noise to the data and found that the noise-floor criterion was useful in determining active modes. Modes that were active
Figure 8: The Fourier transforms of the noise-contaminated proper modal coordinate histories $q_i(t)$ for the first four proper orthogonal modes.

below the noise level were not recovered.

The intention of this work is not to favor one criterion over another. The percent threshold criterion is likely to be important in low-order modeling, while the noise-floor criterion may be useful in seeking thorough modal information.

Proper orthogonal modal coordinates can be used to separate the dynamics associated with each POM. In linear systems, if the POMs accurately portray the LNMs (conditions have been provided [14, 13]), the POCs can bring out modal frequencies, and presumably damping factors. Deviation of the POMs from the LNMs pollutes the modal purity of the POC time histories.

5. ACKNOWLEDGEMENTS

The author is grateful of the support of the National Science Foundation (CMS-9624347), and for the use of data and code generated by M. S. Riaz for the modal analysis study [28].

6. *

References

