Nominal System:

\[\dot{x} = f(x), \quad f(0) = 0 \]

Perturbed System:

\[\dot{x} = f(x) + g(t, x), \quad g(t, 0) = 0 \]

Case 1: The origin of the nominal system is exponentially stable

\[c_1 \|x\|^2 \leq V(x) \leq c_2 \|x\|^2 \]

\[\frac{\partial V}{\partial x} f(x) \leq -c_3 \|x\|^2 \]

\[\left\| \frac{\partial V}{\partial x} \right\| \leq c_4 \|x\| \]
Use $V(x)$ as a Lyapunov function candidate for the perturbed system

$$\dot{V}(t, x) = \frac{\partial V}{\partial x} f(x) + \frac{\partial V}{\partial x} g(t, x)$$

Assume that

$$\|g(t, x)\| \leq \gamma \|x\|, \quad \gamma \geq 0$$

$$\dot{V}(t, x) \leq -c_3 \|x\|^2 + \left\|\frac{\partial V}{\partial x}\right\| \|g(t, x)\|$$

$$\leq -c_3 \|x\|^2 + c_4 \gamma \|x\|^2$$
\[\gamma < \frac{c_3}{c_4} \]

\[\dot{V}(t, x) \leq -(c_3 - \gamma c_4)\|x\|^2 \]

The origin is an exponentially stable equilibrium point of the perturbed system.
Example

\[\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= -4x_1 - 2x_2 + \beta x_2^3, \quad \beta \geq 0
\end{align*} \]

\[\dot{x} = Ax + g(x) \]

\[A = \begin{bmatrix} 0 & 1 \\ -4 & -2 \end{bmatrix}, \quad g(x) = \begin{bmatrix} 0 \\ \beta x_2^3 \end{bmatrix} \]

The eigenvalues of \(A \) are \(-1 \pm j\sqrt{3}\)

\[PA + A^T P = -I \implies P = \begin{bmatrix} \frac{3}{2} & \frac{1}{8} \\ \frac{1}{8} & \frac{5}{16} \end{bmatrix} \]
For the quadratic Lyapunov function $V(x) = x^T P x$,

\[
\lambda_{\text{min}}(P) \|x\|_2^2 \leq V(x) \leq \lambda_{\text{max}}(P) \|x\|_2^2 \\
=: c_1 = c_2
\]

\[
\mathcal{L}_{Ax} V = \frac{\partial V}{\partial x} Ax = -x^T Q x \leq -\lambda_{\text{min}}(Q) \|x\|_2^2 \\
=: c_3
\]

\[
\left\| \frac{\partial V}{\partial x} \right\|_2 = \|2x^T P\| \leq 2\|P\|_2 \|x\|_2 = 2\lambda_{\text{max}}(P) \|x\|_2 \\
=: c_4
\]
\[V(x) = x^T P x, \quad \frac{\partial V}{\partial x} A x = -x^T x \]

\[c_3 = 1, \quad c_4 = 2 \quad \|P\| = 2\lambda_{\text{max}}(P) = 2 \times 1.513 = 3.026 \]

\[\|g(x)\| = \beta |x_2|^3 \leq \beta k_2^2 |x_2| \leq \beta k_2^2 \|x\|, \quad \forall |x_2| \leq k_2 \]

\(g(x)\) satisfies the bound \(\|g(x)\| \leq \gamma \|x\|\) over compact sets of \(x\). Consider the compact set

\[\Omega_c = \{V(x) \leq c\} = \{x^T P x \leq c\}, \quad c > 0 \]

\[k_2 = \max_{x^T P x \leq c} |x_2| = \max_{x^T P x \leq c} |[0 1]x| \]
Fact:
\[
\max_{x^TPx \leq c} \|Lx\| = \sqrt{c} \|LP^{-1/2}\|
\]

Proof
\[
x^TPx \leq c \iff \frac{1}{c} x^TPx \leq 1 \iff \frac{1}{c} x^TP^{1/2} P^{1/2} x \leq 1
\]
\[
y = \frac{1}{\sqrt{c}} P^{1/2} x
\]
\[
\max_{x^TPx \leq c} \|Lx\| = \max_{y^Ty \leq 1} \|L\sqrt{c} P^{-1/2} y\| = \sqrt{c} \|LP^{-1/2}\|
\]
\[k_2 = \max_{x^T P x \leq c} |[0 \ 1] x| = \sqrt{c} \|[0 \ 1] P^{-1/2}\| = 1.8194 \sqrt{c} \]

\[\|g(x)\| \leq \beta c (1.8194)^2 \|x\|, \quad \forall x \in \Omega_c \]

\[\|g(x)\| \leq \gamma \|x\|, \quad \forall x \in \Omega_c, \quad \gamma = \beta c (1.8194)^2 \]

\[\gamma < \frac{c_3}{c_4} \iff \beta < \frac{1}{3.026 \times (1.8194)^2 c} \approx \frac{0.1}{c} \]

\[\beta < \frac{0.1}{c} \Rightarrow \dot{V}(x) \leq -(1 - 10\beta c) \|x\|^2 \]

Hence, the origin is exponentially stable and \(\Omega_c \) is an estimate of the region of attraction.
Alternative Bound on β

$$\dot{V}(x) = -\|x\|^2 + 2x^T Pg(x)$$
$$= -\|x\|^2 + \frac{1}{8}\beta x_2^3 ([2\ 5] x)$$
$$\leq -\|x\|^2 + \sqrt[8]{29}\beta x_2^2 \|x\|^2$$

Over Ω_c, $x_2^2 \leq (1.8194)^2 c$

$$\dot{V}(x) \leq -\left(1 - \frac{\sqrt[8]{29}}{8}\beta (1.8194)^2 c\right) \|x\|^2$$
$$= -\left(1 - \frac{\beta c}{0.448}\right) \|x\|^2$$

If $\beta < 0.448/c$, the origin will be exponentially stable and Ω_c will be an estimate of the region of attraction
Remark: The inequality $\beta < \frac{0.448}{c}$ shows a tradeoff between the estimate of the region of attraction and the estimate of the upper bound on β. The smaller the upper bound on β, the larger the estimate of RA.
Case 2: The origin of the nominal system is asymptotically stable

\[
\dot{V}(t, x) = \frac{\partial V}{\partial x} f(x) + \frac{\partial V}{\partial x} g(t, x) \leq -W_3(x) + \left\| \frac{\partial V}{\partial x} g(t, x) \right\|
\]

Under what condition will the following inequality hold?

\[
\left\| \frac{\partial V}{\partial x} g(t, x) \right\| < W_3(x)
\]

Special Case: Quadratic-Type Lyapunov function

\[
\frac{\partial V}{\partial x} f(x) \leq -c_3 \phi^2(x), \quad \left\| \frac{\partial V}{\partial x} \right\| \leq c_4 \phi(x)
\]
\[\phi(x) : \mathbb{R}^n \to \mathbb{R} \text{ is positive definite and continuous} \]

\[\dot{V}(t, x) \leq -c_3 \phi^2(x) + c_4 \phi(x) \|g(t, x)\| \]

If \[\|g(t, x)\| \leq \gamma \phi(x) \], with \(\gamma < \frac{c_3}{c_4} \)

\[\dot{V}(t, x) \leq -(c_3 - c_4 \gamma) \phi^2(x) \]
Example

\[\dot{x} = -x^3 + g(t, x) \]

\(V(x) = x^4 \) is a quadratic-type Lyapunov function for the nominal system \(\dot{x} = -x^3 \)

\[\frac{\partial V}{\partial x}(-x^3) = -4x^6, \quad \left| \frac{\partial V}{\partial x} \right| = 4|x|^3 \]

\(\phi(x) = |x|^3, \quad c_3 = 4, \quad c_4 = 4 \)

Suppose \(|g(t, x)| \leq \gamma|x|^3, \quad \forall \ x, \) with \(\gamma < 1 \)

\[\dot{V}(t, x) \leq -4(1 - \gamma)\phi^2(x) \]

Hence, the origin is a globally uniformly asymptotically stable
Remark: A nominal system with asymptotically, but not exponentially, stable origin is not robust to smooth perturbations with arbitrarily small linear growth bounds.

Example

\[\dot{x} = -x^3 + \gamma x \]

The origin is unstable for any \(\gamma > 0 \) (can be easily seen via linearization)